The chain covering number of a poset with no infinite antichains

The chain covering number $\operatorname{Cov}(P)$ of a poset $P$ is the least number of chains needed to cover $P$. For an uncountable cardinal $\nu $, we give a list of posets of cardinality and covering number $\nu $ such that for every poset $P$ with no infinite antichain, $\operatorname{Cov}(P)\...

Full description

Bibliographic Details
Main Authors: Abraham, Uri, Pouzet, Maurice
Format: Article
Language:English
Published: Académie des sciences 2023-10-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.511/
_version_ 1797638555385724928
author Abraham, Uri
Pouzet, Maurice
author_facet Abraham, Uri
Pouzet, Maurice
author_sort Abraham, Uri
collection DOAJ
description The chain covering number $\operatorname{Cov}(P)$ of a poset $P$ is the least number of chains needed to cover $P$. For an uncountable cardinal $\nu $, we give a list of posets of cardinality and covering number $\nu $ such that for every poset $P$ with no infinite antichain, $\operatorname{Cov}(P)\ge \nu $ if and only if $P$ embeds a member of the list. This list has two elements if $\nu $ is a successor cardinal, namely $[\nu ]^2$ and its dual, and four elements if $\nu $ is a limit cardinal with $\operatorname{cf}(\nu )$ weakly compact. For $\nu = \aleph _1$, a list was given by the first author; his construction was extended by F. Dorais to every infinite successor cardinal $\nu $.
first_indexed 2024-03-11T13:05:16Z
format Article
id doaj.art-1de968e8e7a34ed1b825bb3f88f65160
institution Directory Open Access Journal
issn 1778-3569
language English
last_indexed 2024-03-11T13:05:16Z
publishDate 2023-10-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj.art-1de968e8e7a34ed1b825bb3f88f651602023-11-03T14:36:26ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-10-01361G81383139910.5802/crmath.51110.5802/crmath.511The chain covering number of a poset with no infinite antichainsAbraham, Uri0Pouzet, Maurice1Math & CS Dept., Ben-Gurion University, Beer-Sheva, 84105 IsraelICJ, Mathématiques, Université Claude-Bernard Lyon1, 43 bd. 11 Novembre 1918, 69622 Villeurbanne Cedex, France; Mathematics & Statistics Department, University of Calgary, Calgary, Alberta, Canada T2N 1N4The chain covering number $\operatorname{Cov}(P)$ of a poset $P$ is the least number of chains needed to cover $P$. For an uncountable cardinal $\nu $, we give a list of posets of cardinality and covering number $\nu $ such that for every poset $P$ with no infinite antichain, $\operatorname{Cov}(P)\ge \nu $ if and only if $P$ embeds a member of the list. This list has two elements if $\nu $ is a successor cardinal, namely $[\nu ]^2$ and its dual, and four elements if $\nu $ is a limit cardinal with $\operatorname{cf}(\nu )$ weakly compact. For $\nu = \aleph _1$, a list was given by the first author; his construction was extended by F. Dorais to every infinite successor cardinal $\nu $.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.511/
spellingShingle Abraham, Uri
Pouzet, Maurice
The chain covering number of a poset with no infinite antichains
Comptes Rendus. Mathématique
title The chain covering number of a poset with no infinite antichains
title_full The chain covering number of a poset with no infinite antichains
title_fullStr The chain covering number of a poset with no infinite antichains
title_full_unstemmed The chain covering number of a poset with no infinite antichains
title_short The chain covering number of a poset with no infinite antichains
title_sort chain covering number of a poset with no infinite antichains
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.511/
work_keys_str_mv AT abrahamuri thechaincoveringnumberofaposetwithnoinfiniteantichains
AT pouzetmaurice thechaincoveringnumberofaposetwithnoinfiniteantichains
AT abrahamuri chaincoveringnumberofaposetwithnoinfiniteantichains
AT pouzetmaurice chaincoveringnumberofaposetwithnoinfiniteantichains