A Combinatorial Proof of a Result on Generalized Lucas Polynomials

We give a combinatorial proof of an elementary property of generalized Lucas polynomials, inspired by [1]. These polynomials in s and t are defined by the recurrence relation 〈n〉 = s〈n-1〉+t〈n-2〉 for n ≥ 2. The initial values are 〈0〉 = 2; 〈1〉= s, respectively.

Bibliographic Details
Main Authors: Laugier Alexandre, Saikia Manjil P.
Format: Article
Language:English
Published: De Gruyter 2016-09-01
Series:Demonstratio Mathematica
Subjects:
Online Access:http://www.degruyter.com/view/j/dema.2016.49.issue-3/dema-2016-0022/dema-2016-0022.xml?format=INT
_version_ 1818420532153942016
author Laugier Alexandre
Saikia Manjil P.
author_facet Laugier Alexandre
Saikia Manjil P.
author_sort Laugier Alexandre
collection DOAJ
description We give a combinatorial proof of an elementary property of generalized Lucas polynomials, inspired by [1]. These polynomials in s and t are defined by the recurrence relation 〈n〉 = s〈n-1〉+t〈n-2〉 for n ≥ 2. The initial values are 〈0〉 = 2; 〈1〉= s, respectively.
first_indexed 2024-12-14T12:55:57Z
format Article
id doaj.art-1ded2daa30804c3c9410961059736287
institution Directory Open Access Journal
issn 0420-1213
2391-4661
language English
last_indexed 2024-12-14T12:55:57Z
publishDate 2016-09-01
publisher De Gruyter
record_format Article
series Demonstratio Mathematica
spelling doaj.art-1ded2daa30804c3c94109610597362872022-12-21T23:00:33ZengDe GruyterDemonstratio Mathematica0420-12132391-46612016-09-0149326627010.1515/dema-2016-0022dema-2016-0022A Combinatorial Proof of a Result on Generalized Lucas PolynomialsLaugier Alexandre0Saikia Manjil P.1LYCÉE TRISTAN CORBIÈRE, 16 RUE DE KERVÉGUEN - BP 17149 - 29671, MORLAIX CEDEX, FRANCEDIPLOMA STUDENT, MATHEMATICS GROUP THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS 11, STRADA COSTIERA TRIESTE, ITALYWe give a combinatorial proof of an elementary property of generalized Lucas polynomials, inspired by [1]. These polynomials in s and t are defined by the recurrence relation 〈n〉 = s〈n-1〉+t〈n-2〉 for n ≥ 2. The initial values are 〈0〉 = 2; 〈1〉= s, respectively.http://www.degruyter.com/view/j/dema.2016.49.issue-3/dema-2016-0022/dema-2016-0022.xml?format=INTbinomial theoremFibonacci numberFibonomial coefficientLucas number q-analogueGeneralized Lucas Polynomials
spellingShingle Laugier Alexandre
Saikia Manjil P.
A Combinatorial Proof of a Result on Generalized Lucas Polynomials
Demonstratio Mathematica
binomial theorem
Fibonacci number
Fibonomial coefficient
Lucas number q-analogue
Generalized Lucas Polynomials
title A Combinatorial Proof of a Result on Generalized Lucas Polynomials
title_full A Combinatorial Proof of a Result on Generalized Lucas Polynomials
title_fullStr A Combinatorial Proof of a Result on Generalized Lucas Polynomials
title_full_unstemmed A Combinatorial Proof of a Result on Generalized Lucas Polynomials
title_short A Combinatorial Proof of a Result on Generalized Lucas Polynomials
title_sort combinatorial proof of a result on generalized lucas polynomials
topic binomial theorem
Fibonacci number
Fibonomial coefficient
Lucas number q-analogue
Generalized Lucas Polynomials
url http://www.degruyter.com/view/j/dema.2016.49.issue-3/dema-2016-0022/dema-2016-0022.xml?format=INT
work_keys_str_mv AT laugieralexandre acombinatorialproofofaresultongeneralizedlucaspolynomials
AT saikiamanjilp acombinatorialproofofaresultongeneralizedlucaspolynomials
AT laugieralexandre combinatorialproofofaresultongeneralizedlucaspolynomials
AT saikiamanjilp combinatorialproofofaresultongeneralizedlucaspolynomials