Extremes of Perturbed Bivariate Rayleigh Risks

We establish first an asymptotic expansion for the joint survival function of a bivariate Rayleigh distribution, one of the most popular probabilistic models in engineering. Furthermore, we show that the component-wise maxima of a Hüsler–Reiss triangular array scheme of independent perturbed bivari...

Full description

Bibliographic Details
Main Authors: Enkelejd Hashorva, Saralees Nadarajah, Tibor K. Pogány
Format: Article
Language:English
Published: Instituto Nacional de Estatística | Statistics Portugal 2014-06-01
Series:Revstat Statistical Journal
Subjects:
Online Access:https://revstat.ine.pt/index.php/REVSTAT/article/view/149
_version_ 1828356974233780224
author Enkelejd Hashorva
Saralees Nadarajah
Tibor K. Pogány
author_facet Enkelejd Hashorva
Saralees Nadarajah
Tibor K. Pogány
author_sort Enkelejd Hashorva
collection DOAJ
description We establish first an asymptotic expansion for the joint survival function of a bivariate Rayleigh distribution, one of the most popular probabilistic models in engineering. Furthermore, we show that the component-wise maxima of a Hüsler–Reiss triangular array scheme of independent perturbed bivariate Rayleigh risks converges to a bivariate Hüsler–Reiss random vector.
first_indexed 2024-04-14T03:07:52Z
format Article
id doaj.art-1df7fd8f089b4e3c8a1ebaa38bc93a75
institution Directory Open Access Journal
issn 1645-6726
2183-0371
language English
last_indexed 2024-04-14T03:07:52Z
publishDate 2014-06-01
publisher Instituto Nacional de Estatística | Statistics Portugal
record_format Article
series Revstat Statistical Journal
spelling doaj.art-1df7fd8f089b4e3c8a1ebaa38bc93a752022-12-22T02:15:40ZengInstituto Nacional de Estatística | Statistics PortugalRevstat Statistical Journal1645-67262183-03712014-06-0112210.57805/revstat.v12i2.149Extremes of Perturbed Bivariate Rayleigh RisksEnkelejd Hashorva 0Saralees Nadarajah 1Tibor K. Pogány 2University of LausanneUniversity of ManchesterUniversity of Rijeka We establish first an asymptotic expansion for the joint survival function of a bivariate Rayleigh distribution, one of the most popular probabilistic models in engineering. Furthermore, we show that the component-wise maxima of a Hüsler–Reiss triangular array scheme of independent perturbed bivariate Rayleigh risks converges to a bivariate Hüsler–Reiss random vector. https://revstat.ine.pt/index.php/REVSTAT/article/view/149asymptotic independenceGumbel max-domain of attractionHüsler–Reiss distributionRayleigh distributiontriangular arrays
spellingShingle Enkelejd Hashorva
Saralees Nadarajah
Tibor K. Pogány
Extremes of Perturbed Bivariate Rayleigh Risks
Revstat Statistical Journal
asymptotic independence
Gumbel max-domain of attraction
Hüsler–Reiss distribution
Rayleigh distribution
triangular arrays
title Extremes of Perturbed Bivariate Rayleigh Risks
title_full Extremes of Perturbed Bivariate Rayleigh Risks
title_fullStr Extremes of Perturbed Bivariate Rayleigh Risks
title_full_unstemmed Extremes of Perturbed Bivariate Rayleigh Risks
title_short Extremes of Perturbed Bivariate Rayleigh Risks
title_sort extremes of perturbed bivariate rayleigh risks
topic asymptotic independence
Gumbel max-domain of attraction
Hüsler–Reiss distribution
Rayleigh distribution
triangular arrays
url https://revstat.ine.pt/index.php/REVSTAT/article/view/149
work_keys_str_mv AT enkelejdhashorva extremesofperturbedbivariaterayleighrisks
AT saraleesnadarajah extremesofperturbedbivariaterayleighrisks
AT tiborkpogany extremesofperturbedbivariaterayleighrisks