Evaluation of the In Vitro and In Vivo Antitumor Efficacy of Peanut Sprout Extracts Cultivated with Fermented Sawdust Medium Against Bladder Cancer

Peanut sprout extracts reportedly exhibit numerous beneficial effects; however, there are few investigations on the biological effects of peanut sprout extracts cultivated with fermented sawdust medium (PSEFS). Here, we examined whether PSEFS demonstrates antitumor activity against bladder cancer, i...

Full description

Bibliographic Details
Main Authors: Hongbeom Park, Jun-Hui Song, Byungdoo Hwang, BoKyung Moon, Seok-Joong Yun, Wun-Jae Kim, Sung-Kwon Moon
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/23/8758
Description
Summary:Peanut sprout extracts reportedly exhibit numerous beneficial effects; however, there are few investigations on the biological effects of peanut sprout extracts cultivated with fermented sawdust medium (PSEFS). Here, we examined whether PSEFS demonstrates antitumor activity against bladder cancer, in vitro and in vivo. The results showed that PSEFS prohibited the proliferation of bladder cancer T24 cells, with this effect attributed to induction of cell cycle arrest at the G1 phase through reduced expression of cyclins and cyclin-dependent kinases caused by a promotion of p21<sup>WAF1</sup> expression. Additionally, PSEFS induced phosphorylation of p38 mitogen-activated protein kinase. Moreover, PSEFS treatment attenuated the invasive and migratory potential of T24 cells due to decreased matrix metalloproteinase-9 activity combined with downregulation of the transcriptional binding activity of SP1, activator protein -1, and nuclear factor-kappaB. Furthermore, PSEFS (20 mg/kg) attenuated the tumor-growth rate in xenograft mice bearing T24 cells, with an effect equivalent to that of cisplatin and in the absence of toxicity following weight-loss evaluation and hematobiochemical testing of PSEFS-treated mice. These results demonstrated the antitumor efficacy of PSEFS both in vitro and in vivo, thereby reporting it as a potential candidate for development of novel agents against bladder cancer.
ISSN:2076-3417