CO2 Adsorption by para-Nitroaniline Sulfuric Acid-Derived Porous Carbon Foam

The expansion product from the sulfuric acid dehydration of para-nitroaniline has been characterized and studied for CO2 adsorption. The X-ray photoelectron spectroscopy (XPS) characterization of the foam indicates that both N and S contents (15 and 9 wt%, respectively) are comparable to those separ...

Full description

Bibliographic Details
Main Authors: Enrico Andreoli, Andrew R. Barron
Format: Article
Language:English
Published: MDPI AG 2016-12-01
Series:C
Subjects:
Online Access:http://www.mdpi.com/2311-5629/2/4/25
Description
Summary:The expansion product from the sulfuric acid dehydration of para-nitroaniline has been characterized and studied for CO2 adsorption. The X-ray photoelectron spectroscopy (XPS) characterization of the foam indicates that both N and S contents (15 and 9 wt%, respectively) are comparable to those separately reported for nitrogen- or sulfur-containing porous carbon materials. The analysis of the XPS signals of C1s, O1s, N1s, and S2p reveals the presence of a large number of functional groups and chemical species. The CO2 adsorption capacity of the foam is 7.9 wt% (1.79 mmol/g) at 24.5 °C and 1 atm in 30 min, while the integral molar heat of adsorption is 113.6 kJ/mol, indicative of the fact that chemical reactions characteristic of amine sorbents are observed for this type of carbon foam. The kinetics of adsorption is of pseudo-first-order with an extrapolated activation energy of 18.3 kJ/mol comparable to that of amine-modified nanocarbons. The richness in functionalities of H2SO4-expanded foams represents a valuable and further pursuable approach to porous carbons alternative to KOH-derived activated carbons.
ISSN:2311-5629