Inductive Power Transfer Battery Charger with IR-Based Closed-Loop Control
A wireless battery charger with inductive power transfer (IPT) was proposed in this paper. The commonly used constant-current constant-voltage (CC-CV) charging method is accomplished by a closed-loop controlled IPT with a hybrid resonant circuit on the secondary side. A smooth transition between the...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-11-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/15/21/8319 |
Summary: | A wireless battery charger with inductive power transfer (IPT) was proposed in this paper. The commonly used constant-current constant-voltage (CC-CV) charging method is accomplished by a closed-loop controlled IPT with a hybrid resonant circuit on the secondary side. A smooth transition between the CC stage and the CV stage can be made simply by swapping exactly the associated switches on resonant capacitors. The required charging voltage and current are regulated by controlling the phase-shifted angle of the high-frequency inverter on the primary side. To stabilize the charging current and voltage, a closed-loop digital controller was introduced with infrared (IR) transmission feedback. Precise regulation of the resonant inverter on a relative small ranged phase-shifted angle can be realized by two 16-bit microcontroller units (MCUs) with compact encoding and decoding techniques. A hybrid resonant inverter was designed for a 600 W prototype of the proposed IPT battery charger. Experimental results from exemplar cases have demonstrated that the battery charger can provide a stable charging current at the CC stage and then transit smoothly into the CV stage. |
---|---|
ISSN: | 1996-1073 |