Hypercycle Systems of 5-Cycles in Complete 3-Uniform Hypergraphs

In this paper, we consider the problem of constructing hypercycle systems of 5-cycles in complete 3-uniform hypergraphs. A hypercycle system <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvaria...

Full description

Bibliographic Details
Main Authors: Anita Keszler, Zsolt Tuza
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/5/484
_version_ 1797395072729219072
author Anita Keszler
Zsolt Tuza
author_facet Anita Keszler
Zsolt Tuza
author_sort Anita Keszler
collection DOAJ
description In this paper, we consider the problem of constructing hypercycle systems of 5-cycles in complete 3-uniform hypergraphs. A hypercycle system <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">C</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></semantics></math></inline-formula> of order <i>v</i> is a collection of <i>r</i>-uniform <i>k</i>-cycles on a <i>v</i>-element vertex set, such that each <i>r</i>-element subset is an edge in precisely one of those <i>k</i>-cycles. We present cyclic hypercycle systems <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">C</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>,</mo><mi>v</mi><mo>)</mo></mrow></semantics></math></inline-formula> of orders <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>=</mo><mn>25</mn><mo>,</mo><mn>26</mn><mo>,</mo><mn>31</mn><mo>,</mo><mn>35</mn><mo>,</mo><mn>37</mn><mo>,</mo><mn>41</mn><mo>,</mo><mn>46</mn><mo>,</mo><mn>47</mn><mo>,</mo><mn>55</mn><mo>,</mo><mn>56</mn></mrow></semantics></math></inline-formula>, a highly symmetric construction for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>=</mo><mn>40</mn></mrow></semantics></math></inline-formula>, and cyclic 2-split constructions of orders <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>32</mn><mo>,</mo><mn>40</mn><mo>,</mo><mn>50</mn><mo>,</mo><mn>52</mn></mrow></semantics></math></inline-formula>. As a consequence, all orders <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>≤</mo><mn>60</mn></mrow></semantics></math></inline-formula> permitted by the divisibility conditions admit a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">C</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>,</mo><mi>v</mi><mo>)</mo></mrow></semantics></math></inline-formula> system. New recursive constructions are also introduced.
first_indexed 2024-03-09T00:29:06Z
format Article
id doaj.art-1e151b016a8f434b9773156913e367eb
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T00:29:06Z
publishDate 2021-02-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-1e151b016a8f434b9773156913e367eb2023-12-11T18:36:25ZengMDPI AGMathematics2227-73902021-02-019548410.3390/math9050484Hypercycle Systems of 5-Cycles in Complete 3-Uniform HypergraphsAnita Keszler0Zsolt Tuza1Machine Perception Laboratory, Institute for Computer Science and Control (SZTAKI), Kende u. 13-17, 1111 Budapest, HungaryAlfréd Rényi Institute of Mathematics, Reáltanoda u. 13-15, 1053 Budapest, HungaryIn this paper, we consider the problem of constructing hypercycle systems of 5-cycles in complete 3-uniform hypergraphs. A hypercycle system <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">C</mi><mo>(</mo><mi>r</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></semantics></math></inline-formula> of order <i>v</i> is a collection of <i>r</i>-uniform <i>k</i>-cycles on a <i>v</i>-element vertex set, such that each <i>r</i>-element subset is an edge in precisely one of those <i>k</i>-cycles. We present cyclic hypercycle systems <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">C</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>,</mo><mi>v</mi><mo>)</mo></mrow></semantics></math></inline-formula> of orders <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>=</mo><mn>25</mn><mo>,</mo><mn>26</mn><mo>,</mo><mn>31</mn><mo>,</mo><mn>35</mn><mo>,</mo><mn>37</mn><mo>,</mo><mn>41</mn><mo>,</mo><mn>46</mn><mo>,</mo><mn>47</mn><mo>,</mo><mn>55</mn><mo>,</mo><mn>56</mn></mrow></semantics></math></inline-formula>, a highly symmetric construction for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>=</mo><mn>40</mn></mrow></semantics></math></inline-formula>, and cyclic 2-split constructions of orders <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>32</mn><mo>,</mo><mn>40</mn><mo>,</mo><mn>50</mn><mo>,</mo><mn>52</mn></mrow></semantics></math></inline-formula>. As a consequence, all orders <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>≤</mo><mn>60</mn></mrow></semantics></math></inline-formula> permitted by the divisibility conditions admit a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">C</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>,</mo><mi>v</mi><mo>)</mo></mrow></semantics></math></inline-formula> system. New recursive constructions are also introduced.https://www.mdpi.com/2227-7390/9/5/484hypergraphhypercycle system3-uniform 5-cycleedge decompositionSteiner system
spellingShingle Anita Keszler
Zsolt Tuza
Hypercycle Systems of 5-Cycles in Complete 3-Uniform Hypergraphs
Mathematics
hypergraph
hypercycle system
3-uniform 5-cycle
edge decomposition
Steiner system
title Hypercycle Systems of 5-Cycles in Complete 3-Uniform Hypergraphs
title_full Hypercycle Systems of 5-Cycles in Complete 3-Uniform Hypergraphs
title_fullStr Hypercycle Systems of 5-Cycles in Complete 3-Uniform Hypergraphs
title_full_unstemmed Hypercycle Systems of 5-Cycles in Complete 3-Uniform Hypergraphs
title_short Hypercycle Systems of 5-Cycles in Complete 3-Uniform Hypergraphs
title_sort hypercycle systems of 5 cycles in complete 3 uniform hypergraphs
topic hypergraph
hypercycle system
3-uniform 5-cycle
edge decomposition
Steiner system
url https://www.mdpi.com/2227-7390/9/5/484
work_keys_str_mv AT anitakeszler hypercyclesystemsof5cyclesincomplete3uniformhypergraphs
AT zsolttuza hypercyclesystemsof5cyclesincomplete3uniformhypergraphs