Edge Neighbor Toughness of Graphs

A new graph parameter, edge neighbor toughness is introduced to measure how difficult it is for a graph to be broken into many components through the deletion of the closed neighborhoods of a few edges. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display=&...

Full description

Bibliographic Details
Main Authors: Xin Feng, Zongtian Wei, Yucheng Yang
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/6/248
_version_ 1827662391946510336
author Xin Feng
Zongtian Wei
Yucheng Yang
author_facet Xin Feng
Zongtian Wei
Yucheng Yang
author_sort Xin Feng
collection DOAJ
description A new graph parameter, edge neighbor toughness is introduced to measure how difficult it is for a graph to be broken into many components through the deletion of the closed neighborhoods of a few edges. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula> be a graph. An edge <i>e</i> is said to be subverted when its neighborhood and the two endvertices are deleted from <i>G</i>. An edge set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>⊆</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> is called an edge cut-strategy if all the edges in <i>S</i> has been subverted from <i>G</i> and the survival subgraph, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>/</mo><mi>S</mi></mrow></semantics></math></inline-formula>, is disconnected, or is a single vertex, or is. The edge neighbor toughness of a graph <i>G</i> is defined to be <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>t</mi><mrow><mi>E</mi><mi>N</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><munder><mo movablelimits="false" form="prefix">min</mo><mrow><mi>S</mi><mo>⊆</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></munder><mrow><mo>{</mo><mfrac><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow><mrow><mi>c</mi><mo>(</mo><mi>G</mi><mo>/</mo><mi>S</mi><mo>)</mo></mrow></mfrac><mo>}</mo></mrow></mrow></semantics></math></inline-formula>, where <i>S</i> is any edge cut strategy of <i>G</i>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>c</mi><mo>(</mo><mi>G</mi><mo>/</mo><mi>S</mi><mo>)</mo></mrow></semantics></math></inline-formula> is the number of the components of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>/</mo><mi>S</mi></mrow></semantics></math></inline-formula>. In this paper, the properties of this parameter are investigated, and the proof of the computation problem of edge neighbor toughness is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mi>P</mi></mrow></semantics></math></inline-formula>-complete; finally, a polynomial algorithm for computing the edge neighbor toughness of trees is given.
first_indexed 2024-03-10T00:25:24Z
format Article
id doaj.art-1e1a49ab97ee42bfb897dec73ba4fa0c
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-10T00:25:24Z
publishDate 2022-05-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-1e1a49ab97ee42bfb897dec73ba4fa0c2023-11-23T15:34:53ZengMDPI AGAxioms2075-16802022-05-0111624810.3390/axioms11060248Edge Neighbor Toughness of GraphsXin Feng0Zongtian Wei1Yucheng Yang2School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, ChinaSchool of Science, Xi’an University of Architecture and Technology, Xi’an 710055, ChinaDepartment of Digital Economy and Digital Technology, Shaanxi Youth Vocational College, Xi’an 710100, ChinaA new graph parameter, edge neighbor toughness is introduced to measure how difficult it is for a graph to be broken into many components through the deletion of the closed neighborhoods of a few edges. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula> be a graph. An edge <i>e</i> is said to be subverted when its neighborhood and the two endvertices are deleted from <i>G</i>. An edge set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>⊆</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> is called an edge cut-strategy if all the edges in <i>S</i> has been subverted from <i>G</i> and the survival subgraph, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>/</mo><mi>S</mi></mrow></semantics></math></inline-formula>, is disconnected, or is a single vertex, or is. The edge neighbor toughness of a graph <i>G</i> is defined to be <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>t</mi><mrow><mi>E</mi><mi>N</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><munder><mo movablelimits="false" form="prefix">min</mo><mrow><mi>S</mi><mo>⊆</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></munder><mrow><mo>{</mo><mfrac><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow><mrow><mi>c</mi><mo>(</mo><mi>G</mi><mo>/</mo><mi>S</mi><mo>)</mo></mrow></mfrac><mo>}</mo></mrow></mrow></semantics></math></inline-formula>, where <i>S</i> is any edge cut strategy of <i>G</i>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>c</mi><mo>(</mo><mi>G</mi><mo>/</mo><mi>S</mi><mo>)</mo></mrow></semantics></math></inline-formula> is the number of the components of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>/</mo><mi>S</mi></mrow></semantics></math></inline-formula>. In this paper, the properties of this parameter are investigated, and the proof of the computation problem of edge neighbor toughness is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mi>P</mi></mrow></semantics></math></inline-formula>-complete; finally, a polynomial algorithm for computing the edge neighbor toughness of trees is given.https://www.mdpi.com/2075-1680/11/6/248graphedge neighbor toughnessNP-completepolynomial algorithmtree
spellingShingle Xin Feng
Zongtian Wei
Yucheng Yang
Edge Neighbor Toughness of Graphs
Axioms
graph
edge neighbor toughness
NP-complete
polynomial algorithm
tree
title Edge Neighbor Toughness of Graphs
title_full Edge Neighbor Toughness of Graphs
title_fullStr Edge Neighbor Toughness of Graphs
title_full_unstemmed Edge Neighbor Toughness of Graphs
title_short Edge Neighbor Toughness of Graphs
title_sort edge neighbor toughness of graphs
topic graph
edge neighbor toughness
NP-complete
polynomial algorithm
tree
url https://www.mdpi.com/2075-1680/11/6/248
work_keys_str_mv AT xinfeng edgeneighbortoughnessofgraphs
AT zongtianwei edgeneighbortoughnessofgraphs
AT yuchengyang edgeneighbortoughnessofgraphs