On Families of Wigner Functions for <i>N</i>-Level Quantum Systems

A method for constructing all admissible unitary non-equivalent Wigner quasiprobability distributions providing the Stratonovic-h-Weyl correspondence for an arbitrary <i>N</i>-level quantum system is proposed. The method is based on the reformulation of the Stratonovich–Weyl corresponden...

Full description

Bibliographic Details
Main Authors: Vahagn Abgaryan, Arsen Khvedelidze
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/6/1013
_version_ 1797531289966870528
author Vahagn Abgaryan
Arsen Khvedelidze
author_facet Vahagn Abgaryan
Arsen Khvedelidze
author_sort Vahagn Abgaryan
collection DOAJ
description A method for constructing all admissible unitary non-equivalent Wigner quasiprobability distributions providing the Stratonovic-h-Weyl correspondence for an arbitrary <i>N</i>-level quantum system is proposed. The method is based on the reformulation of the Stratonovich–Weyl correspondence in the form of algebraic “master equations” for the spectrum of the Stratonovich–Weyl kernel. The later implements a map between the operators in the Hilbert space and the functions in the phase space identified by the complex flag manifold. The non-uniqueness of the solutions to the master equations leads to diversity among the Wigner quasiprobability distributions. It is shown that among all possible Stratonovich–Weyl kernels for a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mo>(</mo><mn>2</mn><mi>j</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-level system, one can always identify the representative that realizes the so-called <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>U</mi><mo>(</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>-symmetric spin-<i>j</i> symbol correspondence. The method is exemplified by considering the Wigner functions of a single qubit and a single qutrit.
first_indexed 2024-03-10T10:41:41Z
format Article
id doaj.art-1e1ec7b9997e482e91bb30eb26cf67f3
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T10:41:41Z
publishDate 2021-06-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-1e1ec7b9997e482e91bb30eb26cf67f32023-11-21T22:53:39ZengMDPI AGSymmetry2073-89942021-06-01136101310.3390/sym13061013On Families of Wigner Functions for <i>N</i>-Level Quantum SystemsVahagn Abgaryan0Arsen Khvedelidze1Laboratory of Information Technologies, Joint Institute for Nuclear Research, 141980 Dubna, RussiaLaboratory of Information Technologies, Joint Institute for Nuclear Research, 141980 Dubna, RussiaA method for constructing all admissible unitary non-equivalent Wigner quasiprobability distributions providing the Stratonovic-h-Weyl correspondence for an arbitrary <i>N</i>-level quantum system is proposed. The method is based on the reformulation of the Stratonovich–Weyl correspondence in the form of algebraic “master equations” for the spectrum of the Stratonovich–Weyl kernel. The later implements a map between the operators in the Hilbert space and the functions in the phase space identified by the complex flag manifold. The non-uniqueness of the solutions to the master equations leads to diversity among the Wigner quasiprobability distributions. It is shown that among all possible Stratonovich–Weyl kernels for a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mo>(</mo><mn>2</mn><mi>j</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-level system, one can always identify the representative that realizes the so-called <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>U</mi><mo>(</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>-symmetric spin-<i>j</i> symbol correspondence. The method is exemplified by considering the Wigner functions of a single qubit and a single qutrit.https://www.mdpi.com/2073-8994/13/6/1013quantum mechanics on phase spacefinite-level quantum systems<i>SU</i>(2) spin-<i>j</i> symbol correspondence
spellingShingle Vahagn Abgaryan
Arsen Khvedelidze
On Families of Wigner Functions for <i>N</i>-Level Quantum Systems
Symmetry
quantum mechanics on phase space
finite-level quantum systems
<i>SU</i>(2) spin-<i>j</i> symbol correspondence
title On Families of Wigner Functions for <i>N</i>-Level Quantum Systems
title_full On Families of Wigner Functions for <i>N</i>-Level Quantum Systems
title_fullStr On Families of Wigner Functions for <i>N</i>-Level Quantum Systems
title_full_unstemmed On Families of Wigner Functions for <i>N</i>-Level Quantum Systems
title_short On Families of Wigner Functions for <i>N</i>-Level Quantum Systems
title_sort on families of wigner functions for i n i level quantum systems
topic quantum mechanics on phase space
finite-level quantum systems
<i>SU</i>(2) spin-<i>j</i> symbol correspondence
url https://www.mdpi.com/2073-8994/13/6/1013
work_keys_str_mv AT vahagnabgaryan onfamiliesofwignerfunctionsforinilevelquantumsystems
AT arsenkhvedelidze onfamiliesofwignerfunctionsforinilevelquantumsystems