On algebraic integrals of a differential equation

We consider the problem of integrating a given differential equation in algebraic functions, which arose together with the integral calculus, but still is not completely resolved in finite form. The difficulties that modern systems of computer algebra face in solving it are examined using Maple as a...

Full description

Bibliographic Details
Main Authors: Mikhail D Malykh, Leonid A Sevastianov, Yu Ying
Format: Article
Language:English
Published: Peoples’ Friendship University of Russia (RUDN University) 2019-12-01
Series:Discrete and Continuous Models and Applied Computational Science
Subjects:
Online Access:http://journals.rudn.ru/miph/article/viewFile/22202/17418
_version_ 1818215941679349760
author Mikhail D Malykh
Leonid A Sevastianov
Yu Ying
author_facet Mikhail D Malykh
Leonid A Sevastianov
Yu Ying
author_sort Mikhail D Malykh
collection DOAJ
description We consider the problem of integrating a given differential equation in algebraic functions, which arose together with the integral calculus, but still is not completely resolved in finite form. The difficulties that modern systems of computer algebra face in solving it are examined using Maple as an example. Its solution according to the method of Lagutinskis determinants and its implementation in the form of a Sagemath package are presented. Necessary conditions for the existence of an integral of contracting derivation are given. A derivation of the ring will be called contracting, if such basis B= {m1, m2, } exists in which Dmi= cimi+o (mi). We prove that a contracting derivation of a polynomial ring admits a general integral only if among the indices c1, c2, there are equal ones. This theorem is convenient for applying to the problem of finding an algebraic integral of Briot-Bouquet equation and differential equations with symbolic parameters. A number of necessary criteria for the existence of an integral are obtained, including those for differential equations of the Briot and Bouquet. New necessary conditions for the existence of a rational integral concerning a fixed singular point are given and realized in Sage.
first_indexed 2024-12-12T06:44:05Z
format Article
id doaj.art-1e2b7db4784a4368b4a06f300c34988b
institution Directory Open Access Journal
issn 2658-4670
2658-7149
language English
last_indexed 2024-12-12T06:44:05Z
publishDate 2019-12-01
publisher Peoples’ Friendship University of Russia (RUDN University)
record_format Article
series Discrete and Continuous Models and Applied Computational Science
spelling doaj.art-1e2b7db4784a4368b4a06f300c34988b2022-12-22T00:34:14ZengPeoples’ Friendship University of Russia (RUDN University)Discrete and Continuous Models and Applied Computational Science2658-46702658-71492019-12-0127210512310.22363/2658-4670-2019-27-2-105-12318090On algebraic integrals of a differential equationMikhail D Malykh0Leonid A Sevastianov1Yu Ying2Peoples’ Friendship University of RussiaPeoples’ Friendship University of RussiaPeoples’ Friendship University of RussiaWe consider the problem of integrating a given differential equation in algebraic functions, which arose together with the integral calculus, but still is not completely resolved in finite form. The difficulties that modern systems of computer algebra face in solving it are examined using Maple as an example. Its solution according to the method of Lagutinskis determinants and its implementation in the form of a Sagemath package are presented. Necessary conditions for the existence of an integral of contracting derivation are given. A derivation of the ring will be called contracting, if such basis B= {m1, m2, } exists in which Dmi= cimi+o (mi). We prove that a contracting derivation of a polynomial ring admits a general integral only if among the indices c1, c2, there are equal ones. This theorem is convenient for applying to the problem of finding an algebraic integral of Briot-Bouquet equation and differential equations with symbolic parameters. A number of necessary criteria for the existence of an integral are obtained, including those for differential equations of the Briot and Bouquet. New necessary conditions for the existence of a rational integral concerning a fixed singular point are given and realized in Sage.http://journals.rudn.ru/miph/article/viewFile/22202/17418darboux polynomialsalgebraic integrals of differential equationsfinite solutionsagesagemathmaple
spellingShingle Mikhail D Malykh
Leonid A Sevastianov
Yu Ying
On algebraic integrals of a differential equation
Discrete and Continuous Models and Applied Computational Science
darboux polynomials
algebraic integrals of differential equations
finite solution
sage
sagemath
maple
title On algebraic integrals of a differential equation
title_full On algebraic integrals of a differential equation
title_fullStr On algebraic integrals of a differential equation
title_full_unstemmed On algebraic integrals of a differential equation
title_short On algebraic integrals of a differential equation
title_sort on algebraic integrals of a differential equation
topic darboux polynomials
algebraic integrals of differential equations
finite solution
sage
sagemath
maple
url http://journals.rudn.ru/miph/article/viewFile/22202/17418
work_keys_str_mv AT mikhaildmalykh onalgebraicintegralsofadifferentialequation
AT leonidasevastianov onalgebraicintegralsofadifferentialequation
AT yuying onalgebraicintegralsofadifferentialequation