Dielectric materials for high-temperature capacitors

Dielectric materials with excellent energy storage capability at elevated temperatures are critical to meet the increasing demand of electrical energy storage and power conditioning at extreme conditions such as hybrid electric vehicles, underground oil industries and aerospace systems. This review...

Full description

Bibliographic Details
Main Authors: Baoyan Fan, Feihua Liu, Guang Yang, He Li, Guangzu Zhang, Shenglin Jiang, Qing Wang
Format: Article
Language:English
Published: Wiley 2018-05-01
Series:IET Nanodielectrics
Subjects:
Online Access:https://digital-library.theiet.org/content/journals/10.1049/iet-nde.2018.0002
Description
Summary:Dielectric materials with excellent energy storage capability at elevated temperatures are critical to meet the increasing demand of electrical energy storage and power conditioning at extreme conditions such as hybrid electric vehicles, underground oil industries and aerospace systems. This review study summarises the important aspects and recent advances in the development of nanostructured dielectric materials including ceramics, polymers and polymer composites for high-temperature capacitor applications. The advantages and limitations of current dielectric materials are discussed and analysed. Ongoing research strategies to suppress the conduction loss and optimise the high-temperature capacitive performance of dielectrics have been highlighted. A summary and outlook will conclude this review.
ISSN:2514-3255