Quantum simulation of expanding space–time with tunnel-coupled condensates

We consider two weakly interacting quasi-1D condensates of cold bosonic atoms. It turns out that a time-dependent variation of the tunnel-coupling between those condensates is equivalent to the spatial expansion of a one-dimensional toy-Universe, with regard to the dynamics of the relative phase fie...

Full description

Bibliographic Details
Main Authors: Clemens Neuenhahn, Florian Marquardt
Format: Article
Language:English
Published: IOP Publishing 2015-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/17/12/125007
Description
Summary:We consider two weakly interacting quasi-1D condensates of cold bosonic atoms. It turns out that a time-dependent variation of the tunnel-coupling between those condensates is equivalent to the spatial expansion of a one-dimensional toy-Universe, with regard to the dynamics of the relative phase field. The dynamics of this field is governed by the quantum sine-Gordon equation. Thus, this analogy could be used to ‘quantum simulate’ the dynamics of a scalar, interacting quantum field on an expanding background. We discuss how to observe the ‘freezing’ of quantum fluctuations during an accelerating expansion in a possible experiment. We also analyze an experimental protocol to study the formation of sine-Gordon breathers in the relative phase field, seeded by quantum fluctuations.
ISSN:1367-2630