Poincaré Symmetry from Heisenberg’s Uncertainty Relations

It is noted that the single-variable Heisenberg commutation relation contains the symmetry of the <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>p</mi> <mo>(</mo> <mn>2</mn> <mo>)</...

Full description

Bibliographic Details
Main Authors: Sibel Başkal, Young S. Kim, Marilyn E. Noz
Format: Article
Language:English
Published: MDPI AG 2019-03-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/3/409
_version_ 1817996855549624320
author Sibel Başkal
Young S. Kim
Marilyn E. Noz
author_facet Sibel Başkal
Young S. Kim
Marilyn E. Noz
author_sort Sibel Başkal
collection DOAJ
description It is noted that the single-variable Heisenberg commutation relation contains the symmetry of the <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>p</mi> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> group which is isomorphic to the Lorentz group applicable to one time-like dimension and two space-like dimensions, known as the <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>O</mi> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> group. According to Paul A. M. Dirac, from the uncertainty commutation relations for two variables, it possible to construct the de Sitter group <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>O</mi> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, namely the Lorentz group applicable to three space-like variables and two time-like variables. By contracting one of the time-like variables in <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>O</mi> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, it is possible to construct the inhomogeneous Lorentz group <inline-formula> <math display="inline"> <semantics> <mrow> <mi>I</mi> <mi>S</mi> <mi>O</mi> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> which serves as the fundamental symmetry group for quantum mechanics and quantum field theory in the Lorentz-covariant world. This <inline-formula> <math display="inline"> <semantics> <mrow> <mi>I</mi> <mi>S</mi> <mi>O</mi> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> group is commonly known as the Poincar&#233; group.
first_indexed 2024-04-14T02:29:35Z
format Article
id doaj.art-1e61eef6750a4e1db45cc2238739001c
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-04-14T02:29:35Z
publishDate 2019-03-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-1e61eef6750a4e1db45cc2238739001c2022-12-22T02:17:44ZengMDPI AGSymmetry2073-89942019-03-0111340910.3390/sym11030409sym11030409Poincaré Symmetry from Heisenberg’s Uncertainty RelationsSibel Başkal0Young S. Kim1Marilyn E. Noz2Department of Physics, Middle East Technical University, 06800 Ankara, TurkeyCenter for Fundamental Physics, University of Maryland, College Park, MD 20742, USADepartment of Radiology, New York University, New York, NY 10016, USAIt is noted that the single-variable Heisenberg commutation relation contains the symmetry of the <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>p</mi> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> group which is isomorphic to the Lorentz group applicable to one time-like dimension and two space-like dimensions, known as the <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>O</mi> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> group. According to Paul A. M. Dirac, from the uncertainty commutation relations for two variables, it possible to construct the de Sitter group <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>O</mi> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, namely the Lorentz group applicable to three space-like variables and two time-like variables. By contracting one of the time-like variables in <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>O</mi> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, it is possible to construct the inhomogeneous Lorentz group <inline-formula> <math display="inline"> <semantics> <mrow> <mi>I</mi> <mi>S</mi> <mi>O</mi> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> which serves as the fundamental symmetry group for quantum mechanics and quantum field theory in the Lorentz-covariant world. This <inline-formula> <math display="inline"> <semantics> <mrow> <mi>I</mi> <mi>S</mi> <mi>O</mi> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> group is commonly known as the Poincar&#233; group.https://www.mdpi.com/2073-8994/11/3/409Poincaré symmetry from uncertainty relationsone symmetry for quantum mechanicsspecial relativity
spellingShingle Sibel Başkal
Young S. Kim
Marilyn E. Noz
Poincaré Symmetry from Heisenberg’s Uncertainty Relations
Symmetry
Poincaré symmetry from uncertainty relations
one symmetry for quantum mechanics
special relativity
title Poincaré Symmetry from Heisenberg’s Uncertainty Relations
title_full Poincaré Symmetry from Heisenberg’s Uncertainty Relations
title_fullStr Poincaré Symmetry from Heisenberg’s Uncertainty Relations
title_full_unstemmed Poincaré Symmetry from Heisenberg’s Uncertainty Relations
title_short Poincaré Symmetry from Heisenberg’s Uncertainty Relations
title_sort poincare symmetry from heisenberg s uncertainty relations
topic Poincaré symmetry from uncertainty relations
one symmetry for quantum mechanics
special relativity
url https://www.mdpi.com/2073-8994/11/3/409
work_keys_str_mv AT sibelbaskal poincaresymmetryfromheisenbergsuncertaintyrelations
AT youngskim poincaresymmetryfromheisenbergsuncertaintyrelations
AT marilynenoz poincaresymmetryfromheisenbergsuncertaintyrelations