Lukasiewicz logic based Fuzzy similarity classifier for Denver group chromosomal classification

This paper proposes a novel P1-weighted Lukasiewicz Logic based Fuzzy Similarity Classifier for classifying Denver Group of chromosomes and compares its performance with the other classifiers under study. A chromosome is classified to one of the seven groups from A to G, based on the Denver System o...

Full description

Bibliographic Details
Main Authors: Rajaraman Sivaramakrishnan, Chokkalingam Arun
Format: Article
Language:English
Published: Universidade Federal de Uberlândia 2013-11-01
Series:Bioscience Journal
Subjects:
Online Access:https://seer.ufu.br/index.php/biosciencejournal/article/view/23129
Description
Summary:This paper proposes a novel P1-weighted Lukasiewicz Logic based Fuzzy Similarity Classifier for classifying Denver Group of chromosomes and compares its performance with the other classifiers under study. A chromosome is classified to one of the seven groups from A to G, based on the Denver System of classification of chromosomes. Chromosomes within a particular Denver Group are difficult to identify, possessing almost identical characteristics for the extracted features. This work evaluates the performance of supervised classifiers including Naive Bayes, Support Vector Machine with Gaussian Kernel (SVM), Multilayer perceptron (MLP) and a novel, unsupervised, P1-weighted Lukasiewicz Logic based Fuzzy Similarity Classifier, in classifying the Denver Group of chromosomes. A fundamental review on fuzzy similarity based classification is presented. Experimental results clearly demonstrates that the proposed P1-weighted Lukasiewicz Logic based Fuzzy Similarity Classifier using the generalized Minkowski mean metric, produces the best classification results, almost identical to the Ground Truth values. One-way Analysis of Variance (ANOVA) at 95% and 99% level of confidence and Tukey's post-hoc analysis is performed to validate the selection of the classifier. The proposed P1-weighted Lukasiewicz Logic based Fuzzy Similarity Classifier gives the most promising classification results and can be applied to any large scale biomedical data and other applications.
ISSN:1981-3163