Spectral theories and topological strings on del Pezzo geometries

Abstract Motivated by understanding M2-branes, we propose to reformulate partition functions of M2-branes by quantum curves. Especially, we focus on the backgrounds of del Pezzo geometries, which enjoy Weyl group symmetries of exceptional algebras. We construct quantum curves explicitly and turn to...

Full description

Bibliographic Details
Main Author: Sanefumi Moriyama
Format: Article
Language:English
Published: SpringerOpen 2020-10-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP10(2020)154
Description
Summary:Abstract Motivated by understanding M2-branes, we propose to reformulate partition functions of M2-branes by quantum curves. Especially, we focus on the backgrounds of del Pezzo geometries, which enjoy Weyl group symmetries of exceptional algebras. We construct quantum curves explicitly and turn to the analysis of classical phase space areas and quantum mirror maps. We find that the group structure helps in clarifying previous subtleties, such as the shift of the chemical potential in the area and the identification of the overall factor of the spectral operator in the mirror map. We list the multiplicities characterizing the quantum mirror maps and find that the decoupling relation known for the BPS indices works for the mirror maps. As a result, with the group structure we can present explicitly the statement for the correspondence between spectral theories and topological strings on del Pezzo geometries.
ISSN:1029-8479