A central limit theorem for numbers satisfying a class of triangular arrays associated with Hermite polynomials
The paper extends the investigations of limit theorems for numbers satisfying a class of triangular arrays. We obtain analytical expressions for the semiexponential generating function the numbers, associated with Hermite polynomials. We apply the results to prove the asymptotic normality of the num...
Autor principal: | Igoris Belovas |
---|---|
Format: | Article |
Idioma: | English |
Publicat: |
Vilnius University Press
2021-03-01
|
Col·lecció: | Lietuvos Matematikos Rinkinys |
Matèries: | |
Accés en línia: | https://www.zurnalai.vu.lt/LMR/article/view/22466 |
Ítems similars
-
Central Limit Theorems for Combinatorial Numbers Associated with Laguerre Polynomials
per: Igoris Belovas
Publicat: (2022-03-01) -
Problems for combinatorial numbers satisfying a class of triangular arrays
per: Igoris Belovas
Publicat: (2023-11-01) -
Local limit theorem for coefficients of modified Borwein’s algorithm, proved by the ratio method
per: Igoris Belovas
Publicat: (2019-12-01) -
Some relations satisfied by Hermite-Hermite matrix polynomials
per: Ayman Shehata, et al.
Publicat: (2017-07-01) -
On some asymptotic properties of classical Hermite polynomials modified by a rational factor
per: Luis Alejandro Molano Molano
Publicat: (2018-03-01)