A central limit theorem for numbers satisfying a class of triangular arrays associated with Hermite polynomials
The paper extends the investigations of limit theorems for numbers satisfying a class of triangular arrays. We obtain analytical expressions for the semiexponential generating function the numbers, associated with Hermite polynomials. We apply the results to prove the asymptotic normality of the num...
Hlavní autor: | Igoris Belovas |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Vilnius University Press
2021-03-01
|
Edice: | Lietuvos Matematikos Rinkinys |
Témata: | |
On-line přístup: | https://www.zurnalai.vu.lt/LMR/article/view/22466 |
Podobné jednotky
-
Central Limit Theorems for Combinatorial Numbers Associated with Laguerre Polynomials
Autor: Igoris Belovas
Vydáno: (2022-03-01) -
Problems for combinatorial numbers satisfying a class of triangular arrays
Autor: Igoris Belovas
Vydáno: (2023-11-01) -
Local limit theorem for coefficients of modified Borwein’s algorithm, proved by the ratio method
Autor: Igoris Belovas
Vydáno: (2019-12-01) -
Some relations satisfied by Hermite-Hermite matrix polynomials
Autor: Ayman Shehata, a další
Vydáno: (2017-07-01) -
On some asymptotic properties of classical Hermite polynomials modified by a rational factor
Autor: Luis Alejandro Molano Molano
Vydáno: (2018-03-01)