New results on the divisibility of power GCD and power LCM matrices

Let $ a, b $ and $ n $ be positive integers and let $ S $ be a set consisting of $ n $ distinct positive integers $ x_1, ..., x_{n-1} $ and $ x_n $. Let $ (S^a) $ (resp. $ [S^a] $) denote the $ n\times n $ matrix having $ \gcd(x_i, x_j)^a $ (resp. $ {\rm lcm}(x_i, x_j)^a $) as its $ (i, j) $-entry....

Full description

Bibliographic Details
Main Authors: Guangyan Zhu, Mao Li, Xiaofan Xu
Format: Article
Language:English
Published: AIMS Press 2022-08-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20221003?viewType=HTML
_version_ 1811286979906633728
author Guangyan Zhu
Mao Li
Xiaofan Xu
author_facet Guangyan Zhu
Mao Li
Xiaofan Xu
author_sort Guangyan Zhu
collection DOAJ
description Let $ a, b $ and $ n $ be positive integers and let $ S $ be a set consisting of $ n $ distinct positive integers $ x_1, ..., x_{n-1} $ and $ x_n $. Let $ (S^a) $ (resp. $ [S^a] $) denote the $ n\times n $ matrix having $ \gcd(x_i, x_j)^a $ (resp. $ {\rm lcm}(x_i, x_j)^a $) as its $ (i, j) $-entry. For any integer $ x\in S $, if $ (y < x, y|z|x \ {\rm and} \ y, z\in S)\Rightarrow z\in\{y, x\} $, then $ y $ is called a greatest-type divisor of $ x $ in $ S $. In this paper, we establish some results about the divisibility between $ (S^a) $ and $ (S^b) $, between $ (S^a) $ and $ [S^b] $ and between $ [S^a] $ and $ [S^b] $ when $ a|b $, $ S $ is gcd closed (i.e., $ \gcd(x_i, x_j)\in S $ for all $ 1\le i, j\le n $), and $ \max_{x\in S}\{|\{y\in S: y \ \text{is a greatest-type divisor of} \ x \ {\rm in} \ S\}|\} = 2 $.
first_indexed 2024-04-13T03:09:30Z
format Article
id doaj.art-1e88b57865e549d794699f809431034b
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-04-13T03:09:30Z
publishDate 2022-08-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-1e88b57865e549d794699f809431034b2022-12-22T03:05:06ZengAIMS PressAIMS Mathematics2473-69882022-08-01710182391825210.3934/math.20221003New results on the divisibility of power GCD and power LCM matricesGuangyan Zhu 0Mao Li1Xiaofan Xu21. School of Teacher Education, Hubei Minzu University, Enshi 445000, China2. School of Mathematics and Statistics, Southwest University, Chongqing 400715, China3. School of Big Data and Statistics, Sichuan Tourism University, Chengdu 610100, ChinaLet $ a, b $ and $ n $ be positive integers and let $ S $ be a set consisting of $ n $ distinct positive integers $ x_1, ..., x_{n-1} $ and $ x_n $. Let $ (S^a) $ (resp. $ [S^a] $) denote the $ n\times n $ matrix having $ \gcd(x_i, x_j)^a $ (resp. $ {\rm lcm}(x_i, x_j)^a $) as its $ (i, j) $-entry. For any integer $ x\in S $, if $ (y < x, y|z|x \ {\rm and} \ y, z\in S)\Rightarrow z\in\{y, x\} $, then $ y $ is called a greatest-type divisor of $ x $ in $ S $. In this paper, we establish some results about the divisibility between $ (S^a) $ and $ (S^b) $, between $ (S^a) $ and $ [S^b] $ and between $ [S^a] $ and $ [S^b] $ when $ a|b $, $ S $ is gcd closed (i.e., $ \gcd(x_i, x_j)\in S $ for all $ 1\le i, j\le n $), and $ \max_{x\in S}\{|\{y\in S: y \ \text{is a greatest-type divisor of} \ x \ {\rm in} \ S\}|\} = 2 $.https://www.aimspress.com/article/doi/10.3934/math.20221003?viewType=HTMLdivisibilitypower matrixgreatest-type divisorgcd-closed set
spellingShingle Guangyan Zhu
Mao Li
Xiaofan Xu
New results on the divisibility of power GCD and power LCM matrices
AIMS Mathematics
divisibility
power matrix
greatest-type divisor
gcd-closed set
title New results on the divisibility of power GCD and power LCM matrices
title_full New results on the divisibility of power GCD and power LCM matrices
title_fullStr New results on the divisibility of power GCD and power LCM matrices
title_full_unstemmed New results on the divisibility of power GCD and power LCM matrices
title_short New results on the divisibility of power GCD and power LCM matrices
title_sort new results on the divisibility of power gcd and power lcm matrices
topic divisibility
power matrix
greatest-type divisor
gcd-closed set
url https://www.aimspress.com/article/doi/10.3934/math.20221003?viewType=HTML
work_keys_str_mv AT guangyanzhu newresultsonthedivisibilityofpowergcdandpowerlcmmatrices
AT maoli newresultsonthedivisibilityofpowergcdandpowerlcmmatrices
AT xiaofanxu newresultsonthedivisibilityofpowergcdandpowerlcmmatrices