Local Stability Dynamics of Equilibrium Points in Predator-Prey Models with Anti-Predator Behavior

This article describes the dynamics of local stability equilibrium point models of interaction between prey populations and their predators. The model involves response functions in the form of Holling type III and anti-predator behavior. The existence and stability of the equilibrium point of the m...

Full description

Bibliographic Details
Main Authors: Joko Harianto, Titik Suparwati, Alfonsina Lisda Puspa Dewi
Format: Article
Language:English
Published: Fakultas MIPA Universitas Jember 2021-07-01
Series:Jurnal Ilmu Dasar
Online Access:https://jurnal.unej.ac.id/index.php/JID/article/view/23991
_version_ 1818924289009647616
author Joko Harianto
Titik Suparwati
Alfonsina Lisda Puspa Dewi
author_facet Joko Harianto
Titik Suparwati
Alfonsina Lisda Puspa Dewi
author_sort Joko Harianto
collection DOAJ
description This article describes the dynamics of local stability equilibrium point models of interaction between prey populations and their predators. The model involves response functions in the form of Holling type III and anti-predator behavior. The existence and stability of the equilibrium point of the model can be obtained by reviewing several cases. One of the factors that affect the existence and local stability of the model equilibrium point is the carrying capacity (k) parameter. If x3∗, y3∗ > 0 is a constant solution of the model and ∈ (0,x3∗), then there is a unique boundary equilibrium point Ek (k , 0). Whereas, if k ∈ (x4∗, y4∗], then Ek (k, 0) is unstable and E3 (x3∗, y3∗) is stable. Furthermore, if k ∈ ( x4∗, ∞), then Ek ( k, 0) remains stable and E4 (x4∗, y4∗) is unstable, but the stability of the equilibrium point E3 (x3∗, y3∗) is branching. The equilibrium point E3 (x3∗, y3∗) can be stable or unstable depending on all parameters involved in the model. Variations of k parameter values are given in numerical simulation to verify the results of the analysis. Numerical simulation indicates that if k = 0,92 then nontrivial equilibrium point Ek (0,92 ; 0) stable. If k = 0,93 then Ek (0,93 ; 0) unstable and E3∗(0,929; 0,00003) stable. If k = 23,94, then Ek (23,94 ; 0) and E3∗(0,929; 0,143) stable, but E4∗(23,93 ; 0,0005) unstable. If k = 38 then Ek(38,0) stable, but E3∗(0,929; 0,145) and E4∗(23,93 ; 0,739) unstable. Keywords: anti-predator behavior, carrying capacity, and holling type III.
first_indexed 2024-12-20T02:22:57Z
format Article
id doaj.art-1e89534895444290b240c568033b7f42
institution Directory Open Access Journal
issn 1411-5735
2442-5613
language English
last_indexed 2024-12-20T02:22:57Z
publishDate 2021-07-01
publisher Fakultas MIPA Universitas Jember
record_format Article
series Jurnal Ilmu Dasar
spelling doaj.art-1e89534895444290b240c568033b7f422022-12-21T19:56:46ZengFakultas MIPA Universitas JemberJurnal Ilmu Dasar1411-57352442-56132021-07-0122215316010.19184/jid.v22i2.2399123991Local Stability Dynamics of Equilibrium Points in Predator-Prey Models with Anti-Predator BehaviorJoko Harianto0Titik Suparwati1Alfonsina Lisda Puspa Dewi2Program Studi Matematika, Fakultas MIPA, Universitas CendrawasihProgram Studi Matematika, Fakultas MIPA, Universitas CendrawasihProgram Studi Matematika, Fakultas MIPA, Universitas CendrawasihThis article describes the dynamics of local stability equilibrium point models of interaction between prey populations and their predators. The model involves response functions in the form of Holling type III and anti-predator behavior. The existence and stability of the equilibrium point of the model can be obtained by reviewing several cases. One of the factors that affect the existence and local stability of the model equilibrium point is the carrying capacity (k) parameter. If x3∗, y3∗ > 0 is a constant solution of the model and ∈ (0,x3∗), then there is a unique boundary equilibrium point Ek (k , 0). Whereas, if k ∈ (x4∗, y4∗], then Ek (k, 0) is unstable and E3 (x3∗, y3∗) is stable. Furthermore, if k ∈ ( x4∗, ∞), then Ek ( k, 0) remains stable and E4 (x4∗, y4∗) is unstable, but the stability of the equilibrium point E3 (x3∗, y3∗) is branching. The equilibrium point E3 (x3∗, y3∗) can be stable or unstable depending on all parameters involved in the model. Variations of k parameter values are given in numerical simulation to verify the results of the analysis. Numerical simulation indicates that if k = 0,92 then nontrivial equilibrium point Ek (0,92 ; 0) stable. If k = 0,93 then Ek (0,93 ; 0) unstable and E3∗(0,929; 0,00003) stable. If k = 23,94, then Ek (23,94 ; 0) and E3∗(0,929; 0,143) stable, but E4∗(23,93 ; 0,0005) unstable. If k = 38 then Ek(38,0) stable, but E3∗(0,929; 0,145) and E4∗(23,93 ; 0,739) unstable. Keywords: anti-predator behavior, carrying capacity, and holling type III.https://jurnal.unej.ac.id/index.php/JID/article/view/23991
spellingShingle Joko Harianto
Titik Suparwati
Alfonsina Lisda Puspa Dewi
Local Stability Dynamics of Equilibrium Points in Predator-Prey Models with Anti-Predator Behavior
Jurnal Ilmu Dasar
title Local Stability Dynamics of Equilibrium Points in Predator-Prey Models with Anti-Predator Behavior
title_full Local Stability Dynamics of Equilibrium Points in Predator-Prey Models with Anti-Predator Behavior
title_fullStr Local Stability Dynamics of Equilibrium Points in Predator-Prey Models with Anti-Predator Behavior
title_full_unstemmed Local Stability Dynamics of Equilibrium Points in Predator-Prey Models with Anti-Predator Behavior
title_short Local Stability Dynamics of Equilibrium Points in Predator-Prey Models with Anti-Predator Behavior
title_sort local stability dynamics of equilibrium points in predator prey models with anti predator behavior
url https://jurnal.unej.ac.id/index.php/JID/article/view/23991
work_keys_str_mv AT jokoharianto localstabilitydynamicsofequilibriumpointsinpredatorpreymodelswithantipredatorbehavior
AT titiksuparwati localstabilitydynamicsofequilibriumpointsinpredatorpreymodelswithantipredatorbehavior
AT alfonsinalisdapuspadewi localstabilitydynamicsofequilibriumpointsinpredatorpreymodelswithantipredatorbehavior