Decay of Persistent Currents in Annular Atomic Superfluids

We investigate the role of vortices in the decay of persistent current states of annular atomic superfluids by solving numerically the Gross–Pitaevskii equation, and we directly compare our results with the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display=&...

Full description

Bibliographic Details
Main Authors: Klejdja Xhani, Giulia Del Pace, Francesco Scazza, Giacomo Roati
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Atoms
Subjects:
Online Access:https://www.mdpi.com/2218-2004/11/8/109
_version_ 1797585514456416256
author Klejdja Xhani
Giulia Del Pace
Francesco Scazza
Giacomo Roati
author_facet Klejdja Xhani
Giulia Del Pace
Francesco Scazza
Giacomo Roati
author_sort Klejdja Xhani
collection DOAJ
description We investigate the role of vortices in the decay of persistent current states of annular atomic superfluids by solving numerically the Gross–Pitaevskii equation, and we directly compare our results with the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>6</mn></msup></semantics></math></inline-formula>Li experiment at LENS data. We theoretically model the optical phase-imprinting technique employed to experimentally excite finite-circulation states in the Bose–Einstein condensation regime, accounting for imperfections of the optical gradient imprinting profile. By comparing simulations of this realistic protocol to an ideal imprinting, we show that the introduced density excitations arising from imperfect imprinting are mainly responsible for limiting the maximum reachable winding number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>w</mi><mi>max</mi></msub></semantics></math></inline-formula> in the superfluid ring. We also investigate the effect of a point-like obstacle with variable potential height <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mn>0</mn></msub></semantics></math></inline-formula> on the decay of circulating supercurrents. For a given obstacle height, a critical circulation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>w</mi><mi>c</mi></msub></semantics></math></inline-formula> exists, such that for an initial circulation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>w</mi><mn>0</mn></msub></semantics></math></inline-formula> larger than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>w</mi><mi>c</mi></msub></semantics></math></inline-formula> the supercurrent decays through the emission of vortices, which cross the superflow and thus induce phase slippage. Higher values of the obstacle height <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mn>0</mn></msub></semantics></math></inline-formula> further favor the entrance of vortices, thus leading to lower values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>w</mi><mi>c</mi></msub></semantics></math></inline-formula>. Furthermore, the stronger vortex-defect interaction at higher <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mn>0</mn></msub></semantics></math></inline-formula> leads to vortices that propagate closer to the center of the ring condensate. The combination of both these effects leads to an increase in the supercurrent decay rate for increasing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>w</mi><mn>0</mn></msub></semantics></math></inline-formula>, in agreement with experimental observations.
first_indexed 2024-03-11T00:07:10Z
format Article
id doaj.art-1e89867b690d422bbb1cc6e208cf66da
institution Directory Open Access Journal
issn 2218-2004
language English
last_indexed 2024-03-11T00:07:10Z
publishDate 2023-07-01
publisher MDPI AG
record_format Article
series Atoms
spelling doaj.art-1e89867b690d422bbb1cc6e208cf66da2023-11-19T00:13:50ZengMDPI AGAtoms2218-20042023-07-0111810910.3390/atoms11080109Decay of Persistent Currents in Annular Atomic SuperfluidsKlejdja Xhani0Giulia Del Pace1Francesco Scazza2Giacomo Roati3Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO) c/o LENS, 50019 Sesto Fiorentino, ItalyDepartment of Physics, University of Florence, 50019 Sesto Fiorentino, ItalyIstituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO) c/o LENS, 50019 Sesto Fiorentino, ItalyIstituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO) c/o LENS, 50019 Sesto Fiorentino, ItalyWe investigate the role of vortices in the decay of persistent current states of annular atomic superfluids by solving numerically the Gross–Pitaevskii equation, and we directly compare our results with the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>6</mn></msup></semantics></math></inline-formula>Li experiment at LENS data. We theoretically model the optical phase-imprinting technique employed to experimentally excite finite-circulation states in the Bose–Einstein condensation regime, accounting for imperfections of the optical gradient imprinting profile. By comparing simulations of this realistic protocol to an ideal imprinting, we show that the introduced density excitations arising from imperfect imprinting are mainly responsible for limiting the maximum reachable winding number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>w</mi><mi>max</mi></msub></semantics></math></inline-formula> in the superfluid ring. We also investigate the effect of a point-like obstacle with variable potential height <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mn>0</mn></msub></semantics></math></inline-formula> on the decay of circulating supercurrents. For a given obstacle height, a critical circulation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>w</mi><mi>c</mi></msub></semantics></math></inline-formula> exists, such that for an initial circulation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>w</mi><mn>0</mn></msub></semantics></math></inline-formula> larger than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>w</mi><mi>c</mi></msub></semantics></math></inline-formula> the supercurrent decays through the emission of vortices, which cross the superflow and thus induce phase slippage. Higher values of the obstacle height <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mn>0</mn></msub></semantics></math></inline-formula> further favor the entrance of vortices, thus leading to lower values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>w</mi><mi>c</mi></msub></semantics></math></inline-formula>. Furthermore, the stronger vortex-defect interaction at higher <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mn>0</mn></msub></semantics></math></inline-formula> leads to vortices that propagate closer to the center of the ring condensate. The combination of both these effects leads to an increase in the supercurrent decay rate for increasing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>w</mi><mn>0</mn></msub></semantics></math></inline-formula>, in agreement with experimental observations.https://www.mdpi.com/2218-2004/11/8/109Bose–Einstein condensatespersistent currentssuperfluidsvorticesphase-slippagesolitons
spellingShingle Klejdja Xhani
Giulia Del Pace
Francesco Scazza
Giacomo Roati
Decay of Persistent Currents in Annular Atomic Superfluids
Atoms
Bose–Einstein condensates
persistent currents
superfluids
vortices
phase-slippage
solitons
title Decay of Persistent Currents in Annular Atomic Superfluids
title_full Decay of Persistent Currents in Annular Atomic Superfluids
title_fullStr Decay of Persistent Currents in Annular Atomic Superfluids
title_full_unstemmed Decay of Persistent Currents in Annular Atomic Superfluids
title_short Decay of Persistent Currents in Annular Atomic Superfluids
title_sort decay of persistent currents in annular atomic superfluids
topic Bose–Einstein condensates
persistent currents
superfluids
vortices
phase-slippage
solitons
url https://www.mdpi.com/2218-2004/11/8/109
work_keys_str_mv AT klejdjaxhani decayofpersistentcurrentsinannularatomicsuperfluids
AT giuliadelpace decayofpersistentcurrentsinannularatomicsuperfluids
AT francescoscazza decayofpersistentcurrentsinannularatomicsuperfluids
AT giacomoroati decayofpersistentcurrentsinannularatomicsuperfluids