Advanced numerical techniques for time integration of relativistic equations of motion for charged particles

Abstract Advanced numerical techniques for solving the relativistic equations of motion for charged particles are provided. A new fourth-order integrator is developed by combining the Taylor series expansion of the numerical angle of relativistic gyration and the fourth-order Runge–Kutta method for...

Full description

Bibliographic Details
Main Authors: Takayuki Umeda, Riku Ozaki
Format: Article
Language:English
Published: SpringerOpen 2023-10-01
Series:Earth, Planets and Space
Subjects:
Online Access:https://doi.org/10.1186/s40623-023-01902-8
Description
Summary:Abstract Advanced numerical techniques for solving the relativistic equations of motion for charged particles are provided. A new fourth-order integrator is developed by combining the Taylor series expansion of the numerical angle of relativistic gyration and the fourth-order Runge–Kutta method for integrating the Lorentz factor. The new integrator gives the exact relativistic E-cross-B drift velocity, but has a numerical accuracy much higher than the classic fourth-order Runge–Kutta integrator. Graphical Abstract
ISSN:1880-5981