Investigation of the microstructure and phase evolution across multi-material Ni50.83Ti49.17-AISI 316L alloy interface fabricated using laser powder bed fusion (L-PBF)
This study evaluates the phase and microstructural evolution of additively manufactured (AM) Nickel Titanium (NiTi) alloy, across the interface with 316L stainless steel build plate, in order to understand the processing parameter (input power, layer thickness and scan speed), composition, and micro...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2022-09-01
|
Series: | Materials & Design |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S026412752200569X |
_version_ | 1817998517162999808 |
---|---|
author | Emmanuel J. Ekoi Giulia Degli-Alessandrini Muhammad Zeeshan Mughal Rajani K. Vijayaraghavan Muhannad A. Obeidi Robert Groarke Igor Kraev Satheesh Krishnamurthy Dermot Brabazon |
author_facet | Emmanuel J. Ekoi Giulia Degli-Alessandrini Muhammad Zeeshan Mughal Rajani K. Vijayaraghavan Muhannad A. Obeidi Robert Groarke Igor Kraev Satheesh Krishnamurthy Dermot Brabazon |
author_sort | Emmanuel J. Ekoi |
collection | DOAJ |
description | This study evaluates the phase and microstructural evolution of additively manufactured (AM) Nickel Titanium (NiTi) alloy, across the interface with 316L stainless steel build plate, in order to understand the processing parameter (input power, layer thickness and scan speed), composition, and microstructure interrelationships necessary to achieve excellent multi-material bonding between NiTi and 316L. The effect of the process parameters utilised was characterised using the Scanning Electron Microscope (SEM), Electron Backscatter Diffraction (EBSD), X-ray diffraction (XRD), and Energy-dispersive X-ray spectroscopy (EDX). SEM/EBSD results demonstrated, for the first time, that the microstructure and phase close to the interface was complex and comprised martensite, austenite and Fe phases, sequentially arranged in a layered sandwich pattern across the build direction. This complexity was necessary for excellent bonding. The L-PBF process parameters influenced the diffusion behaviour and the concentration of elements found at the interface. The diffusion rate of Fe and Ti across the NiTi-316L interface was 3.05×10-6m2/s and 3.27×10-8m2/s, respectively, representing a 93.27-fold increase. The observed microstructural and phase evolution is related to the generated interface chemistry and the thermomechanical history related strain resulting from the L-PBF process. |
first_indexed | 2024-04-14T02:54:17Z |
format | Article |
id | doaj.art-1e9c7d5c721949288d9f80d32882a775 |
institution | Directory Open Access Journal |
issn | 0264-1275 |
language | English |
last_indexed | 2024-04-14T02:54:17Z |
publishDate | 2022-09-01 |
publisher | Elsevier |
record_format | Article |
series | Materials & Design |
spelling | doaj.art-1e9c7d5c721949288d9f80d32882a7752022-12-22T02:16:10ZengElsevierMaterials & Design0264-12752022-09-01221110947Investigation of the microstructure and phase evolution across multi-material Ni50.83Ti49.17-AISI 316L alloy interface fabricated using laser powder bed fusion (L-PBF)Emmanuel J. Ekoi0Giulia Degli-Alessandrini1Muhammad Zeeshan Mughal2Rajani K. Vijayaraghavan3Muhannad A. Obeidi4Robert Groarke5Igor Kraev6Satheesh Krishnamurthy7Dermot Brabazon8School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin, Ireland; I-Form Advanced Manufacturing Research Centre, Dublin City University, Dublin, Ireland; Corresponding author at: School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin, Ireland.The Open University, Electron Microscopy Suite, Walton Hall, Milton Keyne MK7 6AA, UKThe Open University, Electron Microscopy Suite, Walton Hall, Milton Keyne MK7 6AA, UKSchool of Electronic Engineering, Dublin City University, Dublin, IrelandSchool of Mechanical & Manufacturing Engineering, Dublin City University, Dublin, Ireland; I-Form Advanced Manufacturing Research Centre, Dublin City University, Dublin, IrelandSchool of Mechanical & Manufacturing Engineering, Dublin City University, Dublin, Ireland; I-Form Advanced Manufacturing Research Centre, Dublin City University, Dublin, IrelandThe Open University, Electron Microscopy Suite, Walton Hall, Milton Keyne MK7 6AA, UKSchool of Engineering and Innovation, The Open University, Milton Keynes MK76AA, UKSchool of Mechanical & Manufacturing Engineering, Dublin City University, Dublin, Ireland; I-Form Advanced Manufacturing Research Centre, Dublin City University, Dublin, IrelandThis study evaluates the phase and microstructural evolution of additively manufactured (AM) Nickel Titanium (NiTi) alloy, across the interface with 316L stainless steel build plate, in order to understand the processing parameter (input power, layer thickness and scan speed), composition, and microstructure interrelationships necessary to achieve excellent multi-material bonding between NiTi and 316L. The effect of the process parameters utilised was characterised using the Scanning Electron Microscope (SEM), Electron Backscatter Diffraction (EBSD), X-ray diffraction (XRD), and Energy-dispersive X-ray spectroscopy (EDX). SEM/EBSD results demonstrated, for the first time, that the microstructure and phase close to the interface was complex and comprised martensite, austenite and Fe phases, sequentially arranged in a layered sandwich pattern across the build direction. This complexity was necessary for excellent bonding. The L-PBF process parameters influenced the diffusion behaviour and the concentration of elements found at the interface. The diffusion rate of Fe and Ti across the NiTi-316L interface was 3.05×10-6m2/s and 3.27×10-8m2/s, respectively, representing a 93.27-fold increase. The observed microstructural and phase evolution is related to the generated interface chemistry and the thermomechanical history related strain resulting from the L-PBF process.http://www.sciencedirect.com/science/article/pii/S026412752200569XNiTiInterfaceMicrostructureDiffusionElectron Backscatter Diffraction (EBSD)Laser Powder Bed Fusion (L-PBF) |
spellingShingle | Emmanuel J. Ekoi Giulia Degli-Alessandrini Muhammad Zeeshan Mughal Rajani K. Vijayaraghavan Muhannad A. Obeidi Robert Groarke Igor Kraev Satheesh Krishnamurthy Dermot Brabazon Investigation of the microstructure and phase evolution across multi-material Ni50.83Ti49.17-AISI 316L alloy interface fabricated using laser powder bed fusion (L-PBF) Materials & Design NiTi Interface Microstructure Diffusion Electron Backscatter Diffraction (EBSD) Laser Powder Bed Fusion (L-PBF) |
title | Investigation of the microstructure and phase evolution across multi-material Ni50.83Ti49.17-AISI 316L alloy interface fabricated using laser powder bed fusion (L-PBF) |
title_full | Investigation of the microstructure and phase evolution across multi-material Ni50.83Ti49.17-AISI 316L alloy interface fabricated using laser powder bed fusion (L-PBF) |
title_fullStr | Investigation of the microstructure and phase evolution across multi-material Ni50.83Ti49.17-AISI 316L alloy interface fabricated using laser powder bed fusion (L-PBF) |
title_full_unstemmed | Investigation of the microstructure and phase evolution across multi-material Ni50.83Ti49.17-AISI 316L alloy interface fabricated using laser powder bed fusion (L-PBF) |
title_short | Investigation of the microstructure and phase evolution across multi-material Ni50.83Ti49.17-AISI 316L alloy interface fabricated using laser powder bed fusion (L-PBF) |
title_sort | investigation of the microstructure and phase evolution across multi material ni50 83ti49 17 aisi 316l alloy interface fabricated using laser powder bed fusion l pbf |
topic | NiTi Interface Microstructure Diffusion Electron Backscatter Diffraction (EBSD) Laser Powder Bed Fusion (L-PBF) |
url | http://www.sciencedirect.com/science/article/pii/S026412752200569X |
work_keys_str_mv | AT emmanueljekoi investigationofthemicrostructureandphaseevolutionacrossmultimaterialni5083ti4917aisi316lalloyinterfacefabricatedusinglaserpowderbedfusionlpbf AT giuliadeglialessandrini investigationofthemicrostructureandphaseevolutionacrossmultimaterialni5083ti4917aisi316lalloyinterfacefabricatedusinglaserpowderbedfusionlpbf AT muhammadzeeshanmughal investigationofthemicrostructureandphaseevolutionacrossmultimaterialni5083ti4917aisi316lalloyinterfacefabricatedusinglaserpowderbedfusionlpbf AT rajanikvijayaraghavan investigationofthemicrostructureandphaseevolutionacrossmultimaterialni5083ti4917aisi316lalloyinterfacefabricatedusinglaserpowderbedfusionlpbf AT muhannadaobeidi investigationofthemicrostructureandphaseevolutionacrossmultimaterialni5083ti4917aisi316lalloyinterfacefabricatedusinglaserpowderbedfusionlpbf AT robertgroarke investigationofthemicrostructureandphaseevolutionacrossmultimaterialni5083ti4917aisi316lalloyinterfacefabricatedusinglaserpowderbedfusionlpbf AT igorkraev investigationofthemicrostructureandphaseevolutionacrossmultimaterialni5083ti4917aisi316lalloyinterfacefabricatedusinglaserpowderbedfusionlpbf AT satheeshkrishnamurthy investigationofthemicrostructureandphaseevolutionacrossmultimaterialni5083ti4917aisi316lalloyinterfacefabricatedusinglaserpowderbedfusionlpbf AT dermotbrabazon investigationofthemicrostructureandphaseevolutionacrossmultimaterialni5083ti4917aisi316lalloyinterfacefabricatedusinglaserpowderbedfusionlpbf |