Investigation of the microstructure and phase evolution across multi-material Ni50.83Ti49.17-AISI 316L alloy interface fabricated using laser powder bed fusion (L-PBF)

This study evaluates the phase and microstructural evolution of additively manufactured (AM) Nickel Titanium (NiTi) alloy, across the interface with 316L stainless steel build plate, in order to understand the processing parameter (input power, layer thickness and scan speed), composition, and micro...

Full description

Bibliographic Details
Main Authors: Emmanuel J. Ekoi, Giulia Degli-Alessandrini, Muhammad Zeeshan Mughal, Rajani K. Vijayaraghavan, Muhannad A. Obeidi, Robert Groarke, Igor Kraev, Satheesh Krishnamurthy, Dermot Brabazon
Format: Article
Language:English
Published: Elsevier 2022-09-01
Series:Materials & Design
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S026412752200569X
_version_ 1817998517162999808
author Emmanuel J. Ekoi
Giulia Degli-Alessandrini
Muhammad Zeeshan Mughal
Rajani K. Vijayaraghavan
Muhannad A. Obeidi
Robert Groarke
Igor Kraev
Satheesh Krishnamurthy
Dermot Brabazon
author_facet Emmanuel J. Ekoi
Giulia Degli-Alessandrini
Muhammad Zeeshan Mughal
Rajani K. Vijayaraghavan
Muhannad A. Obeidi
Robert Groarke
Igor Kraev
Satheesh Krishnamurthy
Dermot Brabazon
author_sort Emmanuel J. Ekoi
collection DOAJ
description This study evaluates the phase and microstructural evolution of additively manufactured (AM) Nickel Titanium (NiTi) alloy, across the interface with 316L stainless steel build plate, in order to understand the processing parameter (input power, layer thickness and scan speed), composition, and microstructure interrelationships necessary to achieve excellent multi-material bonding between NiTi and 316L. The effect of the process parameters utilised was characterised using the Scanning Electron Microscope (SEM), Electron Backscatter Diffraction (EBSD), X-ray diffraction (XRD), and Energy-dispersive X-ray spectroscopy (EDX). SEM/EBSD results demonstrated, for the first time, that the microstructure and phase close to the interface was complex and comprised martensite, austenite and Fe phases, sequentially arranged in a layered sandwich pattern across the build direction. This complexity was necessary for excellent bonding. The L-PBF process parameters influenced the diffusion behaviour and the concentration of elements found at the interface. The diffusion rate of Fe and Ti across the NiTi-316L interface was 3.05×10-6m2/s and 3.27×10-8m2/s, respectively, representing a 93.27-fold increase. The observed microstructural and phase evolution is related to the generated interface chemistry and the thermomechanical history related strain resulting from the L-PBF process.
first_indexed 2024-04-14T02:54:17Z
format Article
id doaj.art-1e9c7d5c721949288d9f80d32882a775
institution Directory Open Access Journal
issn 0264-1275
language English
last_indexed 2024-04-14T02:54:17Z
publishDate 2022-09-01
publisher Elsevier
record_format Article
series Materials & Design
spelling doaj.art-1e9c7d5c721949288d9f80d32882a7752022-12-22T02:16:10ZengElsevierMaterials & Design0264-12752022-09-01221110947Investigation of the microstructure and phase evolution across multi-material Ni50.83Ti49.17-AISI 316L alloy interface fabricated using laser powder bed fusion (L-PBF)Emmanuel J. Ekoi0Giulia Degli-Alessandrini1Muhammad Zeeshan Mughal2Rajani K. Vijayaraghavan3Muhannad A. Obeidi4Robert Groarke5Igor Kraev6Satheesh Krishnamurthy7Dermot Brabazon8School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin, Ireland; I-Form Advanced Manufacturing Research Centre, Dublin City University, Dublin, Ireland; Corresponding author at: School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin, Ireland.The Open University, Electron Microscopy Suite, Walton Hall, Milton Keyne MK7 6AA, UKThe Open University, Electron Microscopy Suite, Walton Hall, Milton Keyne MK7 6AA, UKSchool of Electronic Engineering, Dublin City University, Dublin, IrelandSchool of Mechanical & Manufacturing Engineering, Dublin City University, Dublin, Ireland; I-Form Advanced Manufacturing Research Centre, Dublin City University, Dublin, IrelandSchool of Mechanical & Manufacturing Engineering, Dublin City University, Dublin, Ireland; I-Form Advanced Manufacturing Research Centre, Dublin City University, Dublin, IrelandThe Open University, Electron Microscopy Suite, Walton Hall, Milton Keyne MK7 6AA, UKSchool of Engineering and Innovation, The Open University, Milton Keynes MK76AA, UKSchool of Mechanical & Manufacturing Engineering, Dublin City University, Dublin, Ireland; I-Form Advanced Manufacturing Research Centre, Dublin City University, Dublin, IrelandThis study evaluates the phase and microstructural evolution of additively manufactured (AM) Nickel Titanium (NiTi) alloy, across the interface with 316L stainless steel build plate, in order to understand the processing parameter (input power, layer thickness and scan speed), composition, and microstructure interrelationships necessary to achieve excellent multi-material bonding between NiTi and 316L. The effect of the process parameters utilised was characterised using the Scanning Electron Microscope (SEM), Electron Backscatter Diffraction (EBSD), X-ray diffraction (XRD), and Energy-dispersive X-ray spectroscopy (EDX). SEM/EBSD results demonstrated, for the first time, that the microstructure and phase close to the interface was complex and comprised martensite, austenite and Fe phases, sequentially arranged in a layered sandwich pattern across the build direction. This complexity was necessary for excellent bonding. The L-PBF process parameters influenced the diffusion behaviour and the concentration of elements found at the interface. The diffusion rate of Fe and Ti across the NiTi-316L interface was 3.05×10-6m2/s and 3.27×10-8m2/s, respectively, representing a 93.27-fold increase. The observed microstructural and phase evolution is related to the generated interface chemistry and the thermomechanical history related strain resulting from the L-PBF process.http://www.sciencedirect.com/science/article/pii/S026412752200569XNiTiInterfaceMicrostructureDiffusionElectron Backscatter Diffraction (EBSD)Laser Powder Bed Fusion (L-PBF)
spellingShingle Emmanuel J. Ekoi
Giulia Degli-Alessandrini
Muhammad Zeeshan Mughal
Rajani K. Vijayaraghavan
Muhannad A. Obeidi
Robert Groarke
Igor Kraev
Satheesh Krishnamurthy
Dermot Brabazon
Investigation of the microstructure and phase evolution across multi-material Ni50.83Ti49.17-AISI 316L alloy interface fabricated using laser powder bed fusion (L-PBF)
Materials & Design
NiTi
Interface
Microstructure
Diffusion
Electron Backscatter Diffraction (EBSD)
Laser Powder Bed Fusion (L-PBF)
title Investigation of the microstructure and phase evolution across multi-material Ni50.83Ti49.17-AISI 316L alloy interface fabricated using laser powder bed fusion (L-PBF)
title_full Investigation of the microstructure and phase evolution across multi-material Ni50.83Ti49.17-AISI 316L alloy interface fabricated using laser powder bed fusion (L-PBF)
title_fullStr Investigation of the microstructure and phase evolution across multi-material Ni50.83Ti49.17-AISI 316L alloy interface fabricated using laser powder bed fusion (L-PBF)
title_full_unstemmed Investigation of the microstructure and phase evolution across multi-material Ni50.83Ti49.17-AISI 316L alloy interface fabricated using laser powder bed fusion (L-PBF)
title_short Investigation of the microstructure and phase evolution across multi-material Ni50.83Ti49.17-AISI 316L alloy interface fabricated using laser powder bed fusion (L-PBF)
title_sort investigation of the microstructure and phase evolution across multi material ni50 83ti49 17 aisi 316l alloy interface fabricated using laser powder bed fusion l pbf
topic NiTi
Interface
Microstructure
Diffusion
Electron Backscatter Diffraction (EBSD)
Laser Powder Bed Fusion (L-PBF)
url http://www.sciencedirect.com/science/article/pii/S026412752200569X
work_keys_str_mv AT emmanueljekoi investigationofthemicrostructureandphaseevolutionacrossmultimaterialni5083ti4917aisi316lalloyinterfacefabricatedusinglaserpowderbedfusionlpbf
AT giuliadeglialessandrini investigationofthemicrostructureandphaseevolutionacrossmultimaterialni5083ti4917aisi316lalloyinterfacefabricatedusinglaserpowderbedfusionlpbf
AT muhammadzeeshanmughal investigationofthemicrostructureandphaseevolutionacrossmultimaterialni5083ti4917aisi316lalloyinterfacefabricatedusinglaserpowderbedfusionlpbf
AT rajanikvijayaraghavan investigationofthemicrostructureandphaseevolutionacrossmultimaterialni5083ti4917aisi316lalloyinterfacefabricatedusinglaserpowderbedfusionlpbf
AT muhannadaobeidi investigationofthemicrostructureandphaseevolutionacrossmultimaterialni5083ti4917aisi316lalloyinterfacefabricatedusinglaserpowderbedfusionlpbf
AT robertgroarke investigationofthemicrostructureandphaseevolutionacrossmultimaterialni5083ti4917aisi316lalloyinterfacefabricatedusinglaserpowderbedfusionlpbf
AT igorkraev investigationofthemicrostructureandphaseevolutionacrossmultimaterialni5083ti4917aisi316lalloyinterfacefabricatedusinglaserpowderbedfusionlpbf
AT satheeshkrishnamurthy investigationofthemicrostructureandphaseevolutionacrossmultimaterialni5083ti4917aisi316lalloyinterfacefabricatedusinglaserpowderbedfusionlpbf
AT dermotbrabazon investigationofthemicrostructureandphaseevolutionacrossmultimaterialni5083ti4917aisi316lalloyinterfacefabricatedusinglaserpowderbedfusionlpbf