HDAC1 in the Ovarian Granulosa Cells of Tan Sheep Improves Cumulus Cell Expansion and Oocyte Maturation Independently of the EGF-like Growth Factors

Previous studies have shown that some of the histone deacetylases (HDACs) play diverse roles in the regulation of ovarian somatic cell development, oocyte maturation and early embryonic development in different species including sheep. This study aimed to clarify whether HDAC1 also played pivotal ro...

Full description

Bibliographic Details
Main Authors: Yaxiu Xu, Shanshan Fan, Yujun Liu, Jiaqi Shi, Xianguo Xie, Xiangyan Wang, Chao Wang, Xinfeng Liu, Guoliang Xia
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Biology
Subjects:
Online Access:https://www.mdpi.com/2079-7737/11/10/1464
Description
Summary:Previous studies have shown that some of the histone deacetylases (HDACs) play diverse roles in the regulation of ovarian somatic cell development, oocyte maturation and early embryonic development in different species including sheep. This study aimed to clarify whether HDAC1 also played pivotal roles in regulating oocyte maturation in Tan sheep. The results showed that HDAC1 was expressed in the nuclei of both the granulosa cells and oocytes of the growing follicles in the Tan sheep’s ovaries. However, the level of HDAC1 was unaffected by luteinizing hormone (LH) induction in cultured granulosa cells. Meanwhile, the specific inhibition of HDAC1 using pyroxamide did not induce significant changes in the expression levels of EGF-like growth factors in vitro, whereas both the cumulus expansion and oocyte maturation of the cultured cumulus oocyte complexes (COCs) were significantly inhibited by pyroxamide. Additionally, the numbers of histone acetylation sites (H4K5, H4K12, H3K14 and H3K9) in ovarian granulosa cells were significantly increased. In conclusion, a constant expression of HDAC1 in the growing follicles of Tan sheep may be pivotal for supporting oocyte growth and maturation, although its action may not be closely correlated with LH induction, nor does it directly affect the expression of the EGF-like factors. Our study implies that there may exist diverse functions of the respective HDACs in modulating female reproduction in sheep.
ISSN:2079-7737