Optimality of the Approximation and Learning by the Rescaled Pure Super Greedy Algorithms
We propose the Weak Rescaled Pure Super Greedy Algorithm (WRPSGA) for approximation with respect to a dictionary <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">D</mi><...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-08-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/11/9/437 |
_version_ | 1797491187344474112 |
---|---|
author | Wenhui Zhang Peixin Ye Shuo Xing Xu Xu |
author_facet | Wenhui Zhang Peixin Ye Shuo Xing Xu Xu |
author_sort | Wenhui Zhang |
collection | DOAJ |
description | We propose the Weak Rescaled Pure Super Greedy Algorithm (WRPSGA) for approximation with respect to a dictionary <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">D</mi></semantics></math></inline-formula> in Hilbert space. The WRPSGA is simpler than some popular greedy algorithms. We show that the convergence rate of the RPSGA on the closure of the convex hull of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula>-coherent dictionary <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">D</mi></semantics></math></inline-formula> is optimal. Then, we design the Rescaled Pure Super Greedy Learning Algorithm (RPSGLA) for kernel-based supervised learning. We prove that the convergence rate of the RPSGLA can be arbitrarily close to the best rate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><msup><mi>m</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></semantics></math></inline-formula> under some mild assumptions. |
first_indexed | 2024-03-10T00:43:52Z |
format | Article |
id | doaj.art-1e9dc1ad91594ec3b87e150702708b29 |
institution | Directory Open Access Journal |
issn | 2075-1680 |
language | English |
last_indexed | 2024-03-10T00:43:52Z |
publishDate | 2022-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Axioms |
spelling | doaj.art-1e9dc1ad91594ec3b87e150702708b292023-11-23T15:01:59ZengMDPI AGAxioms2075-16802022-08-0111943710.3390/axioms11090437Optimality of the Approximation and Learning by the Rescaled Pure Super Greedy AlgorithmsWenhui Zhang0Peixin Ye1Shuo Xing2Xu Xu3School of Mathematics and LPMC, Nankai University, Tianjin 300071, ChinaSchool of Mathematics and LPMC, Nankai University, Tianjin 300071, ChinaSchool of Mathematics and LPMC, Nankai University, Tianjin 300071, ChinaSchool of Science, China University of Geosciences, Beijing 100083, ChinaWe propose the Weak Rescaled Pure Super Greedy Algorithm (WRPSGA) for approximation with respect to a dictionary <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">D</mi></semantics></math></inline-formula> in Hilbert space. The WRPSGA is simpler than some popular greedy algorithms. We show that the convergence rate of the RPSGA on the closure of the convex hull of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula>-coherent dictionary <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">D</mi></semantics></math></inline-formula> is optimal. Then, we design the Rescaled Pure Super Greedy Learning Algorithm (RPSGLA) for kernel-based supervised learning. We prove that the convergence rate of the RPSGLA can be arbitrarily close to the best rate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><msup><mi>m</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></semantics></math></inline-formula> under some mild assumptions.https://www.mdpi.com/2075-1680/11/9/437super greedy algorithmssparse approximationsupervised learningconvergence rate |
spellingShingle | Wenhui Zhang Peixin Ye Shuo Xing Xu Xu Optimality of the Approximation and Learning by the Rescaled Pure Super Greedy Algorithms Axioms super greedy algorithms sparse approximation supervised learning convergence rate |
title | Optimality of the Approximation and Learning by the Rescaled Pure Super Greedy Algorithms |
title_full | Optimality of the Approximation and Learning by the Rescaled Pure Super Greedy Algorithms |
title_fullStr | Optimality of the Approximation and Learning by the Rescaled Pure Super Greedy Algorithms |
title_full_unstemmed | Optimality of the Approximation and Learning by the Rescaled Pure Super Greedy Algorithms |
title_short | Optimality of the Approximation and Learning by the Rescaled Pure Super Greedy Algorithms |
title_sort | optimality of the approximation and learning by the rescaled pure super greedy algorithms |
topic | super greedy algorithms sparse approximation supervised learning convergence rate |
url | https://www.mdpi.com/2075-1680/11/9/437 |
work_keys_str_mv | AT wenhuizhang optimalityoftheapproximationandlearningbytherescaledpuresupergreedyalgorithms AT peixinye optimalityoftheapproximationandlearningbytherescaledpuresupergreedyalgorithms AT shuoxing optimalityoftheapproximationandlearningbytherescaledpuresupergreedyalgorithms AT xuxu optimalityoftheapproximationandlearningbytherescaledpuresupergreedyalgorithms |