Effect of Atmospheric-Pressure Gas-Plasma Treatment on Surface Properties of Hot-Dip Zn-Mg-Al Alloy-Coated Steel

The effect of plasma-radical change on the surface properties of Zn-Mg-Al ternary-alloy-coated steel sheets during atmospheric-pressure (AP) plasma treatment using different process gases: O 2, N 2, and compressed air was investigated. The plasma-induced radicals promoted the formation of chemical p...

Full description

Bibliographic Details
Main Authors: Chang-U Jeong, Jae-Hyeon Kim, Je-Shin Park, Min-Su Kim, Sung-Jin Kim, Min-Suk Oh
Format: Article
Language:English
Published: Polish Academy of Sciences 2023-03-01
Series:Archives of Metallurgy and Materials
Subjects:
Online Access:https://journals.pan.pl/Content/126252/PDF/AMM-2023-1-28-Min-Suk%20Oh.pdf
Description
Summary:The effect of plasma-radical change on the surface properties of Zn-Mg-Al ternary-alloy-coated steel sheets during atmospheric-pressure (AP) plasma treatment using different process gases: O 2, N 2, and compressed air was investigated. The plasma-induced radicals promoted the formation of chemical particles on the surface of the Zn-Mg-Al coating, thereby increasing the surface roughness. The surface energy was calculated using the Owen-Wendtgeometric equation. Contact angle measurements indicated that the surface free energy of the alloy sheets increased upon AP plasma treatment. The surface properties of the Zn-Mg-Al coating changed more significantly in the order air > O 2 > N 2 gas, indicating that the plasma radicals facilitated the carbonization and hydroxylation of the Mg and Al components during the AP plasma treatment.
ISSN:2300-1909