Technical Note: A technique to convert NO<sub>2</sub> to NO<sub>2</sub><sup>−</sup> with S(IV) and its application to measuring nitrate photolysis

<p>Nitrate photolysis is a potentially significant mechanism for “renoxifying” the atmosphere, i.e., converting nitrate into nitrogen oxides – nitrogen dioxide (NO<span class="inline-formula"><sub>2</sub></span>) and nitric oxide (NO) – and nitrous acid (HONO)...

Full description

Bibliographic Details
Main Authors: A. Lieberman, J. Picco, M. Onder, C. Anastasio
Format: Article
Language:English
Published: Copernicus Publications 2024-04-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/24/4411/2024/acp-24-4411-2024.pdf
_version_ 1797205780696399872
author A. Lieberman
J. Picco
M. Onder
C. Anastasio
author_facet A. Lieberman
J. Picco
M. Onder
C. Anastasio
author_sort A. Lieberman
collection DOAJ
description <p>Nitrate photolysis is a potentially significant mechanism for “renoxifying” the atmosphere, i.e., converting nitrate into nitrogen oxides – nitrogen dioxide (NO<span class="inline-formula"><sub>2</sub></span>) and nitric oxide (NO) – and nitrous acid (HONO). Nitrate photolysis in the environment occurs through two channels which produce (1) NO<span class="inline-formula"><sub>2</sub></span> and hydroxyl radical (<span class="inline-formula"><span class="Radical">⚫</span></span>OH) and (2) nitrite (NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="d70791633dd6ab2cb9df29e9d6103c2b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-4411-2024-ie00004.svg" width="9pt" height="16pt" src="acp-24-4411-2024-ie00004.png"/></svg:svg></span></span>) and an oxygen atom (O(<span class="inline-formula"><sup>3</sup></span>P)). Although the aqueous quantum yields and photolysis rate constants of both channels have been established, field observations suggest that nitrate photolysis is enhanced in the environment. Laboratory studies investigating these enhancements typically only measure one of the two photo-channels, since measuring both channels generally requires separate analytical methods and instrumentation. However, measuring only one channel makes it difficult to assess whether secondary chemistry is enhancing one channel at the expense of the other or if there is an overall enhancement of nitrate photochemistry. Here, we show that the addition of S(IV), i.e., bisulfite and sulfite, can convert NO<span class="inline-formula"><sub>2</sub></span> to NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="cf5ab84666d459bfffb5030e23e4ac33"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-4411-2024-ie00005.svg" width="9pt" height="16pt" src="acp-24-4411-2024-ie00005.png"/></svg:svg></span></span>, allowing for measurement of both nitrate photolysis channels with the same equipment. By varying the concentration of S(IV) and exploring method parameters, we determine the experimental conditions that quantitatively convert NO<span class="inline-formula"><sub>2</sub></span> and accurately quantify the resulting NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="f06d32f4d6a551848f21e837fd69c018"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-4411-2024-ie00006.svg" width="9pt" height="16pt" src="acp-24-4411-2024-ie00006.png"/></svg:svg></span></span>. We then apply the method to a test case, showing how an <span class="inline-formula"><span class="Radical">⚫</span></span>OH scavenger in solution prevents the oxidation of NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="605864571c3dcb0b6e3cb32dc4ee1961"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-4411-2024-ie00007.svg" width="9pt" height="16pt" src="acp-24-4411-2024-ie00007.png"/></svg:svg></span></span> to NO<span class="inline-formula"><sub>2</sub></span> but does not enhance the overall photolysis efficiency of nitrate.</p>
first_indexed 2024-04-24T08:56:34Z
format Article
id doaj.art-1ebc1aacedfb427fa9985a0b9126fb19
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-24T08:56:34Z
publishDate 2024-04-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-1ebc1aacedfb427fa9985a0b9126fb192024-04-16T07:08:04ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242024-04-01244411441910.5194/acp-24-4411-2024Technical Note: A technique to convert NO<sub>2</sub> to NO<sub>2</sub><sup>−</sup> with S(IV) and its application to measuring nitrate photolysisA. LiebermanJ. PiccoM. OnderC. Anastasio<p>Nitrate photolysis is a potentially significant mechanism for “renoxifying” the atmosphere, i.e., converting nitrate into nitrogen oxides – nitrogen dioxide (NO<span class="inline-formula"><sub>2</sub></span>) and nitric oxide (NO) – and nitrous acid (HONO). Nitrate photolysis in the environment occurs through two channels which produce (1) NO<span class="inline-formula"><sub>2</sub></span> and hydroxyl radical (<span class="inline-formula"><span class="Radical">⚫</span></span>OH) and (2) nitrite (NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="d70791633dd6ab2cb9df29e9d6103c2b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-4411-2024-ie00004.svg" width="9pt" height="16pt" src="acp-24-4411-2024-ie00004.png"/></svg:svg></span></span>) and an oxygen atom (O(<span class="inline-formula"><sup>3</sup></span>P)). Although the aqueous quantum yields and photolysis rate constants of both channels have been established, field observations suggest that nitrate photolysis is enhanced in the environment. Laboratory studies investigating these enhancements typically only measure one of the two photo-channels, since measuring both channels generally requires separate analytical methods and instrumentation. However, measuring only one channel makes it difficult to assess whether secondary chemistry is enhancing one channel at the expense of the other or if there is an overall enhancement of nitrate photochemistry. Here, we show that the addition of S(IV), i.e., bisulfite and sulfite, can convert NO<span class="inline-formula"><sub>2</sub></span> to NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="cf5ab84666d459bfffb5030e23e4ac33"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-4411-2024-ie00005.svg" width="9pt" height="16pt" src="acp-24-4411-2024-ie00005.png"/></svg:svg></span></span>, allowing for measurement of both nitrate photolysis channels with the same equipment. By varying the concentration of S(IV) and exploring method parameters, we determine the experimental conditions that quantitatively convert NO<span class="inline-formula"><sub>2</sub></span> and accurately quantify the resulting NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="f06d32f4d6a551848f21e837fd69c018"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-4411-2024-ie00006.svg" width="9pt" height="16pt" src="acp-24-4411-2024-ie00006.png"/></svg:svg></span></span>. We then apply the method to a test case, showing how an <span class="inline-formula"><span class="Radical">⚫</span></span>OH scavenger in solution prevents the oxidation of NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="605864571c3dcb0b6e3cb32dc4ee1961"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-4411-2024-ie00007.svg" width="9pt" height="16pt" src="acp-24-4411-2024-ie00007.png"/></svg:svg></span></span> to NO<span class="inline-formula"><sub>2</sub></span> but does not enhance the overall photolysis efficiency of nitrate.</p>https://acp.copernicus.org/articles/24/4411/2024/acp-24-4411-2024.pdf
spellingShingle A. Lieberman
J. Picco
M. Onder
C. Anastasio
Technical Note: A technique to convert NO<sub>2</sub> to NO<sub>2</sub><sup>−</sup> with S(IV) and its application to measuring nitrate photolysis
Atmospheric Chemistry and Physics
title Technical Note: A technique to convert NO<sub>2</sub> to NO<sub>2</sub><sup>−</sup> with S(IV) and its application to measuring nitrate photolysis
title_full Technical Note: A technique to convert NO<sub>2</sub> to NO<sub>2</sub><sup>−</sup> with S(IV) and its application to measuring nitrate photolysis
title_fullStr Technical Note: A technique to convert NO<sub>2</sub> to NO<sub>2</sub><sup>−</sup> with S(IV) and its application to measuring nitrate photolysis
title_full_unstemmed Technical Note: A technique to convert NO<sub>2</sub> to NO<sub>2</sub><sup>−</sup> with S(IV) and its application to measuring nitrate photolysis
title_short Technical Note: A technique to convert NO<sub>2</sub> to NO<sub>2</sub><sup>−</sup> with S(IV) and its application to measuring nitrate photolysis
title_sort technical note a technique to convert no sub 2 sub to no sub 2 sub sup sup with s iv and its application to measuring nitrate photolysis
url https://acp.copernicus.org/articles/24/4411/2024/acp-24-4411-2024.pdf
work_keys_str_mv AT alieberman technicalnoteatechniquetoconvertnosub2subtonosub2subsupsupwithsivanditsapplicationtomeasuringnitratephotolysis
AT jpicco technicalnoteatechniquetoconvertnosub2subtonosub2subsupsupwithsivanditsapplicationtomeasuringnitratephotolysis
AT monder technicalnoteatechniquetoconvertnosub2subtonosub2subsupsupwithsivanditsapplicationtomeasuringnitratephotolysis
AT canastasio technicalnoteatechniquetoconvertnosub2subtonosub2subsupsupwithsivanditsapplicationtomeasuringnitratephotolysis