Boundedly finite conjugacy classes of tensors

Let $n$ be a positive integer and let $G$ be a group‎. ‎We denote by $\nu(G)$ a certain extension of the non-abelian tensor square $G \otimes G$ by $G \times G$‎. ‎Set $T_{\otimes}(G) = \{g \otimes h \mid g,h \in G\}$‎. ‎We prove that if the size of the conjugacy class $\left |x^{\nu(G)} \right| \le...

Full description

Bibliographic Details
Main Authors: Raimundo Bastos, Carmine Monetta
Format: Article
Language:English
Published: University of Isfahan 2021-12-01
Series:International Journal of Group Theory
Subjects:
Online Access:https://ijgt.ui.ac.ir/article_25060_2f6d29096899cad81af9341e68a868aa.pdf
_version_ 1819105207910400000
author Raimundo Bastos
Carmine Monetta
author_facet Raimundo Bastos
Carmine Monetta
author_sort Raimundo Bastos
collection DOAJ
description Let $n$ be a positive integer and let $G$ be a group‎. ‎We denote by $\nu(G)$ a certain extension of the non-abelian tensor square $G \otimes G$ by $G \times G$‎. ‎Set $T_{\otimes}(G) = \{g \otimes h \mid g,h \in G\}$‎. ‎We prove that if the size of the conjugacy class $\left |x^{\nu(G)} \right| \leq n$ for every $x \in T_{\otimes}(G)$‎, ‎then the second derived subgroup $\nu(G)''$ is finite with $n$-bounded order‎. ‎Moreover‎, ‎we obtain a sufficient condition for a group to be a BFC-group‎.
first_indexed 2024-12-22T02:18:35Z
format Article
id doaj.art-1ee5614747af4f14b40261809ff36213
institution Directory Open Access Journal
issn 2251-7650
2251-7669
language English
last_indexed 2024-12-22T02:18:35Z
publishDate 2021-12-01
publisher University of Isfahan
record_format Article
series International Journal of Group Theory
spelling doaj.art-1ee5614747af4f14b40261809ff362132022-12-21T18:42:11ZengUniversity of IsfahanInternational Journal of Group Theory2251-76502251-76692021-12-0110418719510.22108/ijgt.2020.124368.164325060Boundedly finite conjugacy classes of tensorsRaimundo Bastos0Carmine Monetta1Departamento de Matemática, Universidade de Bras´ ılia, Brasilia-DF BrazilDipartimento di Matematica, Università di Salerno, Salerno, ItalyLet $n$ be a positive integer and let $G$ be a group‎. ‎We denote by $\nu(G)$ a certain extension of the non-abelian tensor square $G \otimes G$ by $G \times G$‎. ‎Set $T_{\otimes}(G) = \{g \otimes h \mid g,h \in G\}$‎. ‎We prove that if the size of the conjugacy class $\left |x^{\nu(G)} \right| \leq n$ for every $x \in T_{\otimes}(G)$‎, ‎then the second derived subgroup $\nu(G)''$ is finite with $n$-bounded order‎. ‎Moreover‎, ‎we obtain a sufficient condition for a group to be a BFC-group‎.https://ijgt.ui.ac.ir/article_25060_2f6d29096899cad81af9341e68a868aa.pdf‎structure theorems‎, ‎finiteness conditionsnon-abelian tensor square of groups
spellingShingle Raimundo Bastos
Carmine Monetta
Boundedly finite conjugacy classes of tensors
International Journal of Group Theory
‎structure theorems‎, ‎finiteness conditions
non-abelian tensor square of groups
title Boundedly finite conjugacy classes of tensors
title_full Boundedly finite conjugacy classes of tensors
title_fullStr Boundedly finite conjugacy classes of tensors
title_full_unstemmed Boundedly finite conjugacy classes of tensors
title_short Boundedly finite conjugacy classes of tensors
title_sort boundedly finite conjugacy classes of tensors
topic ‎structure theorems‎, ‎finiteness conditions
non-abelian tensor square of groups
url https://ijgt.ui.ac.ir/article_25060_2f6d29096899cad81af9341e68a868aa.pdf
work_keys_str_mv AT raimundobastos boundedlyfiniteconjugacyclassesoftensors
AT carminemonetta boundedlyfiniteconjugacyclassesoftensors