Effect of helium irradiation on the hydrogen isotope retention in tungsten by in situ TEM and STEM-EELS analysis

The microscopic effects of He irradiation on the H isotope retention in W were quantitatively evaluated using two types of high-function transmission electron microscopes: an ion-gun directly coupled TEM equipped with a high-resolution quadrupole mass spectrometer and an aberration-corrected scannin...

Full description

Bibliographic Details
Main Authors: Mitsutaka Miyamoto, Kohei Sano, Tomoya Sawae, Mitsutaka Haruta, Hiroki Kurata
Format: Article
Language:English
Published: Elsevier 2023-09-01
Series:Nuclear Materials and Energy
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352179123001230
Description
Summary:The microscopic effects of He irradiation on the H isotope retention in W were quantitatively evaluated using two types of high-function transmission electron microscopes: an ion-gun directly coupled TEM equipped with a high-resolution quadrupole mass spectrometer and an aberration-corrected scanning TEM combined with electron energy-loss spectrometer (STEM-EELS). He pre-irradiation induced fine and dense bubbles near the surface of the samples, thereby significantly increasing the deuterium (D) retention. The STEM-EELS analysis revealed that most of the D atoms were trapped and distributed homogeneously in the bubbles and released at relatively low temperatures without microstructural changes with increasing temperature. In contrast, some of the He was dissociated from the bubble by D post-irradiation in the matrix with a metastable state and retrapped by the bubble as the temperature was increased.
ISSN:2352-1791