Independent strong domination in complementary prisms

<p class="p1">Let <em>G</em> = (<em>V, E</em>) be a graph and <em>u,v</em> ∈ <em>V</em>. Then, <em>u</em> strongly dominates<span class="Apple-converted-space">  </span><em>v</em><span cl...

Full description

Bibliographic Details
Main Authors: Zeynep Nihan Berberler, Murat Ersen Berberler
Format: Article
Language:English
Published: Indonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), Indonesia 2020-04-01
Series:Electronic Journal of Graph Theory and Applications
Subjects:
Online Access:https://www.ejgta.org/index.php/ejgta/article/view/466
_version_ 1818531951539126272
author Zeynep Nihan Berberler
Murat Ersen Berberler
author_facet Zeynep Nihan Berberler
Murat Ersen Berberler
author_sort Zeynep Nihan Berberler
collection DOAJ
description <p class="p1">Let <em>G</em> = (<em>V, E</em>) be a graph and <em>u,v</em> ∈ <em>V</em>. Then, <em>u</em> strongly dominates<span class="Apple-converted-space">  </span><em>v</em><span class="Apple-converted-space"> </span>if (i) <em>uv</em> ∈ <em>E</em><span class="Apple-converted-space">  </span>and (ii) deg(<em>u</em>) ≥ deg(<em>v</em>). A set <em>D</em> ⊂ <em>V</em> <span class="Apple-converted-space"> </span>is a strong-dominating set of<span class="Apple-converted-space">  </span><em>G</em><span class="Apple-converted-space">  </span>if every vertex in <em>V</em>-<em>D</em> is strongly dominated by at least one vertex in <em>D</em>. A set <em>D</em> ⊆ <em>V</em><span class="Apple-converted-space">  </span>is an independent set if no two vertices of <em>D</em><span class="Apple-converted-space">  </span>are adjacent. The independent strong domination number <em>i<sub>s</sub></em>(<em>G</em>)<span class="Apple-converted-space"> </span>of a graph <em>G</em><span class="Apple-converted-space"> </span>is the minimum cardinality of a strong dominating set which is independent. Let <em>Ġ</em> <span class="Apple-converted-space">  </span>be the complement of a graph <em>G</em>. The complementary prism <em>GĠ</em><span class="Apple-converted-space">  </span>of <em>G</em><span class="Apple-converted-space">  </span>is the graph formed from the disjoint union of <em>G</em><span class="Apple-converted-space">  </span>and<span class="Apple-converted-space">  </span><em>Ġ</em> by adding the edges of a perfect matching between the corresponding vertices of <em>G</em><span class="Apple-converted-space"> </span>and<span class="Apple-converted-space"> <em>Ġ</em></span>. In this paper, we consider the independent strong domination in complementary prisms, characterize the complementary prisms with small independent strong domination numbers, and investigate the relationship between independent strong domination number and the distance-based parameters.</p>
first_indexed 2024-12-11T17:39:10Z
format Article
id doaj.art-1f041d9d92ed421f88bfd3b7645144c0
institution Directory Open Access Journal
issn 2338-2287
language English
last_indexed 2024-12-11T17:39:10Z
publishDate 2020-04-01
publisher Indonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), Indonesia
record_format Article
series Electronic Journal of Graph Theory and Applications
spelling doaj.art-1f041d9d92ed421f88bfd3b7645144c02022-12-22T00:56:35ZengIndonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), IndonesiaElectronic Journal of Graph Theory and Applications2338-22872020-04-01811810.5614/ejgta.2020.8.1.1162Independent strong domination in complementary prismsZeynep Nihan Berberler0Murat Ersen Berberler1Faculty of Science, Department of Computer Science, Dokuz Eylul University, 35160, Izmir/TurkeyFaculty of Science, Department of Computer Science, Dokuz Eylul University, 35160, Izmir/Turkey<p class="p1">Let <em>G</em> = (<em>V, E</em>) be a graph and <em>u,v</em> ∈ <em>V</em>. Then, <em>u</em> strongly dominates<span class="Apple-converted-space">  </span><em>v</em><span class="Apple-converted-space"> </span>if (i) <em>uv</em> ∈ <em>E</em><span class="Apple-converted-space">  </span>and (ii) deg(<em>u</em>) ≥ deg(<em>v</em>). A set <em>D</em> ⊂ <em>V</em> <span class="Apple-converted-space"> </span>is a strong-dominating set of<span class="Apple-converted-space">  </span><em>G</em><span class="Apple-converted-space">  </span>if every vertex in <em>V</em>-<em>D</em> is strongly dominated by at least one vertex in <em>D</em>. A set <em>D</em> ⊆ <em>V</em><span class="Apple-converted-space">  </span>is an independent set if no two vertices of <em>D</em><span class="Apple-converted-space">  </span>are adjacent. The independent strong domination number <em>i<sub>s</sub></em>(<em>G</em>)<span class="Apple-converted-space"> </span>of a graph <em>G</em><span class="Apple-converted-space"> </span>is the minimum cardinality of a strong dominating set which is independent. Let <em>Ġ</em> <span class="Apple-converted-space">  </span>be the complement of a graph <em>G</em>. The complementary prism <em>GĠ</em><span class="Apple-converted-space">  </span>of <em>G</em><span class="Apple-converted-space">  </span>is the graph formed from the disjoint union of <em>G</em><span class="Apple-converted-space">  </span>and<span class="Apple-converted-space">  </span><em>Ġ</em> by adding the edges of a perfect matching between the corresponding vertices of <em>G</em><span class="Apple-converted-space"> </span>and<span class="Apple-converted-space"> <em>Ġ</em></span>. In this paper, we consider the independent strong domination in complementary prisms, characterize the complementary prisms with small independent strong domination numbers, and investigate the relationship between independent strong domination number and the distance-based parameters.</p>https://www.ejgta.org/index.php/ejgta/article/view/466domination, independent strong domination, complementary prisms, corona product
spellingShingle Zeynep Nihan Berberler
Murat Ersen Berberler
Independent strong domination in complementary prisms
Electronic Journal of Graph Theory and Applications
domination, independent strong domination, complementary prisms, corona product
title Independent strong domination in complementary prisms
title_full Independent strong domination in complementary prisms
title_fullStr Independent strong domination in complementary prisms
title_full_unstemmed Independent strong domination in complementary prisms
title_short Independent strong domination in complementary prisms
title_sort independent strong domination in complementary prisms
topic domination, independent strong domination, complementary prisms, corona product
url https://www.ejgta.org/index.php/ejgta/article/view/466
work_keys_str_mv AT zeynepnihanberberler independentstrongdominationincomplementaryprisms
AT muratersenberberler independentstrongdominationincomplementaryprisms