Analysis of Microstructure and Mechanical Properties of Bi-Modal Nanoparticle-Reinforced Cu-Matrix

Bi-modal particles are used as reinforcements for Cu-matrix. Nano TiC and/or Al<sub>2</sub>O<sub>3</sub> were mechanically mixed with Cu particles for 24 h. The Cu-TiC/Al<sub>2</sub>O<sub>3</sub> composites were successfully produced using spark plasma...

Full description

Bibliographic Details
Main Authors: Fadel S. Hamid, Omayma A. Elkady, A. R. S. Essa, A. El-Nikhaily, Ayman Elsayed, Ashraf K. Eessaa
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/11/9/1081
_version_ 1797519674645151744
author Fadel S. Hamid
Omayma A. Elkady
A. R. S. Essa
A. El-Nikhaily
Ayman Elsayed
Ashraf K. Eessaa
author_facet Fadel S. Hamid
Omayma A. Elkady
A. R. S. Essa
A. El-Nikhaily
Ayman Elsayed
Ashraf K. Eessaa
author_sort Fadel S. Hamid
collection DOAJ
description Bi-modal particles are used as reinforcements for Cu-matrix. Nano TiC and/or Al<sub>2</sub>O<sub>3</sub> were mechanically mixed with Cu particles for 24 h. The Cu-TiC/Al<sub>2</sub>O<sub>3</sub> composites were successfully produced using spark plasma sintering (SPS). To investigate the effect of TiC and Al<sub>2</sub>O<sub>3</sub> nanoparticles on the microstructure and mechanical properties of Cu-TiC/Al<sub>2</sub>O<sub>3</sub> nanocomposites, they were added, whether individually or combined, to the copper (Cu) matrix at 3, 6, and 9 wt.%. The results showed that titanium carbide was homogeneously distributed in the copper matrix, whereas alumina nanoparticles showed some agglomeration at Cu grain boundaries. The crystallite size exhibited a clear reduction as a reaction to the increase of the reinforcement ratio. Furthermore, increasing the TiC and Al<sub>2</sub>O<sub>3</sub> nanoparticle content in the Cu-TiC/Al<sub>2</sub>O<sub>3</sub> composites reduced the relative density from 95% for Cu-1.5 wt.% TiC and 1.5 wt.% Al<sub>2</sub>O<sub>3</sub> to 89% for Cu-4.5 wt.% TiC and 4.5 wt.% Al<sub>2</sub>O<sub>3</sub>. Cu-9 wt.% TiC achieved a maximum compressive strength of 851.99 N/mm<sup>2</sup>. Hardness values increased with increasing ceramic content.
first_indexed 2024-03-10T07:46:09Z
format Article
id doaj.art-1f0a6d61c56a4a1f9c9d92d9e2b61094
institution Directory Open Access Journal
issn 2073-4352
language English
last_indexed 2024-03-10T07:46:09Z
publishDate 2021-09-01
publisher MDPI AG
record_format Article
series Crystals
spelling doaj.art-1f0a6d61c56a4a1f9c9d92d9e2b610942023-11-22T12:35:34ZengMDPI AGCrystals2073-43522021-09-01119108110.3390/cryst11091081Analysis of Microstructure and Mechanical Properties of Bi-Modal Nanoparticle-Reinforced Cu-MatrixFadel S. Hamid0Omayma A. Elkady1A. R. S. Essa2A. El-Nikhaily3Ayman Elsayed4Ashraf K. Eessaa5Mechanical Department, Faculty of Technology and Education, Suez University, Suez 43519, EgyptPowder Technology Division, Manufacturing Technology Department, Central Metallurgical R & D Institute, 1 Elfelezat St. Eltebeen, Cairo 11421, EgyptMechanical Department, Faculty of Technology and Education, Suez University, Suez 43519, EgyptMechanical Department, Faculty of Technology and Education, Suez University, Suez 43519, EgyptPowder Technology Division, Manufacturing Technology Department, Central Metallurgical R & D Institute, 1 Elfelezat St. Eltebeen, Cairo 11421, EgyptNanotechnology Lab El Nozha, Electronic Research Institute (E.R.I.), Cairo 12622, EgyptBi-modal particles are used as reinforcements for Cu-matrix. Nano TiC and/or Al<sub>2</sub>O<sub>3</sub> were mechanically mixed with Cu particles for 24 h. The Cu-TiC/Al<sub>2</sub>O<sub>3</sub> composites were successfully produced using spark plasma sintering (SPS). To investigate the effect of TiC and Al<sub>2</sub>O<sub>3</sub> nanoparticles on the microstructure and mechanical properties of Cu-TiC/Al<sub>2</sub>O<sub>3</sub> nanocomposites, they were added, whether individually or combined, to the copper (Cu) matrix at 3, 6, and 9 wt.%. The results showed that titanium carbide was homogeneously distributed in the copper matrix, whereas alumina nanoparticles showed some agglomeration at Cu grain boundaries. The crystallite size exhibited a clear reduction as a reaction to the increase of the reinforcement ratio. Furthermore, increasing the TiC and Al<sub>2</sub>O<sub>3</sub> nanoparticle content in the Cu-TiC/Al<sub>2</sub>O<sub>3</sub> composites reduced the relative density from 95% for Cu-1.5 wt.% TiC and 1.5 wt.% Al<sub>2</sub>O<sub>3</sub> to 89% for Cu-4.5 wt.% TiC and 4.5 wt.% Al<sub>2</sub>O<sub>3</sub>. Cu-9 wt.% TiC achieved a maximum compressive strength of 851.99 N/mm<sup>2</sup>. Hardness values increased with increasing ceramic content.https://www.mdpi.com/2073-4352/11/9/1081coppernanocompositesmetal-matrix composites (MMCs)mechanical propertiesspark plasma sintering
spellingShingle Fadel S. Hamid
Omayma A. Elkady
A. R. S. Essa
A. El-Nikhaily
Ayman Elsayed
Ashraf K. Eessaa
Analysis of Microstructure and Mechanical Properties of Bi-Modal Nanoparticle-Reinforced Cu-Matrix
Crystals
copper
nanocomposites
metal-matrix composites (MMCs)
mechanical properties
spark plasma sintering
title Analysis of Microstructure and Mechanical Properties of Bi-Modal Nanoparticle-Reinforced Cu-Matrix
title_full Analysis of Microstructure and Mechanical Properties of Bi-Modal Nanoparticle-Reinforced Cu-Matrix
title_fullStr Analysis of Microstructure and Mechanical Properties of Bi-Modal Nanoparticle-Reinforced Cu-Matrix
title_full_unstemmed Analysis of Microstructure and Mechanical Properties of Bi-Modal Nanoparticle-Reinforced Cu-Matrix
title_short Analysis of Microstructure and Mechanical Properties of Bi-Modal Nanoparticle-Reinforced Cu-Matrix
title_sort analysis of microstructure and mechanical properties of bi modal nanoparticle reinforced cu matrix
topic copper
nanocomposites
metal-matrix composites (MMCs)
mechanical properties
spark plasma sintering
url https://www.mdpi.com/2073-4352/11/9/1081
work_keys_str_mv AT fadelshamid analysisofmicrostructureandmechanicalpropertiesofbimodalnanoparticlereinforcedcumatrix
AT omaymaaelkady analysisofmicrostructureandmechanicalpropertiesofbimodalnanoparticlereinforcedcumatrix
AT arsessa analysisofmicrostructureandmechanicalpropertiesofbimodalnanoparticlereinforcedcumatrix
AT aelnikhaily analysisofmicrostructureandmechanicalpropertiesofbimodalnanoparticlereinforcedcumatrix
AT aymanelsayed analysisofmicrostructureandmechanicalpropertiesofbimodalnanoparticlereinforcedcumatrix
AT ashrafkeessaa analysisofmicrostructureandmechanicalpropertiesofbimodalnanoparticlereinforcedcumatrix