Predicting anti-TNF treatment response in rheumatoid arthritis: An artificial intelligence-driven model using cytokine profile and routine clinical practice parameters

Introduction: Rheumatoid arthritis (RA) is a heterogeneous disease in which therapeutic strategies used have evolved dramatically. Despite significant progress in treatment strategies such as the development of anti-TNF drugs, it is still not possible to differentiate those patients who will respond...

Full description

Bibliographic Details
Main Authors: Juan Luis Valdivieso Shephard, Enrique Josue Alvarez Robles, Carmen Cámara Hijón, Borja Hernandez Breijo, Marta Novella-Navarro, Patricia Bogas Schay, Ricardo Cuesta de la Cámara, Alejandro Balsa Criado, Eduardo López Granados, Chamaida Plasencia Rodríguez
Format: Article
Language:English
Published: Elsevier 2024-01-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844023101332
_version_ 1797337075718029312
author Juan Luis Valdivieso Shephard
Enrique Josue Alvarez Robles
Carmen Cámara Hijón
Borja Hernandez Breijo
Marta Novella-Navarro
Patricia Bogas Schay
Ricardo Cuesta de la Cámara
Alejandro Balsa Criado
Eduardo López Granados
Chamaida Plasencia Rodríguez
author_facet Juan Luis Valdivieso Shephard
Enrique Josue Alvarez Robles
Carmen Cámara Hijón
Borja Hernandez Breijo
Marta Novella-Navarro
Patricia Bogas Schay
Ricardo Cuesta de la Cámara
Alejandro Balsa Criado
Eduardo López Granados
Chamaida Plasencia Rodríguez
author_sort Juan Luis Valdivieso Shephard
collection DOAJ
description Introduction: Rheumatoid arthritis (RA) is a heterogeneous disease in which therapeutic strategies used have evolved dramatically. Despite significant progress in treatment strategies such as the development of anti-TNF drugs, it is still not possible to differentiate those patients who will respond from who will not. This can lead to effective-treatment delays and unnecessary costs. The aim of this study was to utilize a profile of the patient's characteristics, clinical parameters, immune status (cytokine profile) and artificial intelligence to assess the feasibility of developing a tool that could allow us to predict which patients will respond to treatment with anti-TNF drugs. Methods: This study included 38 patients with RA from the RA-Paz cohort. Clinical activity was measured at baseline and after 6 months of treatment. The cytokines measured before the start of anti-TNF treatment were IL-1, IL-12, IL-10, IL-2, IL-4, IFNg, TNFa, and IL-6. Statistical analyses were performed using the Wilcoxon-Rank-Sum Test and the Benjamini-Hochberg method. The predictive model viability was explored using the 5-fold cross-validation scheme in order to train the logistic regression models. Results: Statistically significant differences were found in parameters such as IL-6, IL-2, CRP and DAS-ESR. The predictive model performed to an acceptable level in correctly classifying patients (ROC-AUC 0.804167 to 0.891667), suggesting that it would be possible to develop a clinical classification tool. Conclusions: Using a combination of parameters such as IL-6, IL-2, CRP and DAS-ESR, it was possible to develop a predictive model that can acceptably discriminate between remitters and non-remitters. However, this model needs to be replicated in a larger cohort to confirm these findings.
first_indexed 2024-03-08T09:04:10Z
format Article
id doaj.art-1f0b1ae5ecc5435e88634c56b64ad22e
institution Directory Open Access Journal
issn 2405-8440
language English
last_indexed 2024-03-08T09:04:10Z
publishDate 2024-01-01
publisher Elsevier
record_format Article
series Heliyon
spelling doaj.art-1f0b1ae5ecc5435e88634c56b64ad22e2024-02-01T06:30:25ZengElsevierHeliyon2405-84402024-01-01101e22925Predicting anti-TNF treatment response in rheumatoid arthritis: An artificial intelligence-driven model using cytokine profile and routine clinical practice parametersJuan Luis Valdivieso Shephard0Enrique Josue Alvarez Robles1Carmen Cámara Hijón2Borja Hernandez Breijo3Marta Novella-Navarro4Patricia Bogas Schay5Ricardo Cuesta de la Cámara6Alejandro Balsa Criado7Eduardo López Granados8Chamaida Plasencia Rodríguez9Immunology Unit, Hospital Universitario La Paz-Idipaz, 28046, Madrid, Spain; Corresponding author.Spaik Technologies, S.L. Madrid, SpainImmunology Unit, Hospital Universitario La Paz-Idipaz, Madrid, SpainImmunology-Rheumatology Research Group, Hospital Universitario La Paz-Idipaz, Madrid, SpainRheumatology Service, Hospital Universitario La Paz-Idipaz, Madrid, SpainRheumatology Service, Hospital Universitario La Paz-Idipaz, Madrid, SpainImmunology Unit, Hospital Universitario La Paz-Idipaz, Madrid, SpainRheumatology Service, Hospital Universitario La Paz-Idipaz, Madrid, SpainImmunology Unit, Hospital Universitario La Paz-Idipaz, Madrid, SpainRheumatology Service, Hospital Universitario La Paz-Idipaz, Madrid, SpainIntroduction: Rheumatoid arthritis (RA) is a heterogeneous disease in which therapeutic strategies used have evolved dramatically. Despite significant progress in treatment strategies such as the development of anti-TNF drugs, it is still not possible to differentiate those patients who will respond from who will not. This can lead to effective-treatment delays and unnecessary costs. The aim of this study was to utilize a profile of the patient's characteristics, clinical parameters, immune status (cytokine profile) and artificial intelligence to assess the feasibility of developing a tool that could allow us to predict which patients will respond to treatment with anti-TNF drugs. Methods: This study included 38 patients with RA from the RA-Paz cohort. Clinical activity was measured at baseline and after 6 months of treatment. The cytokines measured before the start of anti-TNF treatment were IL-1, IL-12, IL-10, IL-2, IL-4, IFNg, TNFa, and IL-6. Statistical analyses were performed using the Wilcoxon-Rank-Sum Test and the Benjamini-Hochberg method. The predictive model viability was explored using the 5-fold cross-validation scheme in order to train the logistic regression models. Results: Statistically significant differences were found in parameters such as IL-6, IL-2, CRP and DAS-ESR. The predictive model performed to an acceptable level in correctly classifying patients (ROC-AUC 0.804167 to 0.891667), suggesting that it would be possible to develop a clinical classification tool. Conclusions: Using a combination of parameters such as IL-6, IL-2, CRP and DAS-ESR, it was possible to develop a predictive model that can acceptably discriminate between remitters and non-remitters. However, this model needs to be replicated in a larger cohort to confirm these findings.http://www.sciencedirect.com/science/article/pii/S2405844023101332Rheumatoid arthritisCytokinesArtificial intelligenceAnti-TNF response predictionInterleukin 2Interleukin 6
spellingShingle Juan Luis Valdivieso Shephard
Enrique Josue Alvarez Robles
Carmen Cámara Hijón
Borja Hernandez Breijo
Marta Novella-Navarro
Patricia Bogas Schay
Ricardo Cuesta de la Cámara
Alejandro Balsa Criado
Eduardo López Granados
Chamaida Plasencia Rodríguez
Predicting anti-TNF treatment response in rheumatoid arthritis: An artificial intelligence-driven model using cytokine profile and routine clinical practice parameters
Heliyon
Rheumatoid arthritis
Cytokines
Artificial intelligence
Anti-TNF response prediction
Interleukin 2
Interleukin 6
title Predicting anti-TNF treatment response in rheumatoid arthritis: An artificial intelligence-driven model using cytokine profile and routine clinical practice parameters
title_full Predicting anti-TNF treatment response in rheumatoid arthritis: An artificial intelligence-driven model using cytokine profile and routine clinical practice parameters
title_fullStr Predicting anti-TNF treatment response in rheumatoid arthritis: An artificial intelligence-driven model using cytokine profile and routine clinical practice parameters
title_full_unstemmed Predicting anti-TNF treatment response in rheumatoid arthritis: An artificial intelligence-driven model using cytokine profile and routine clinical practice parameters
title_short Predicting anti-TNF treatment response in rheumatoid arthritis: An artificial intelligence-driven model using cytokine profile and routine clinical practice parameters
title_sort predicting anti tnf treatment response in rheumatoid arthritis an artificial intelligence driven model using cytokine profile and routine clinical practice parameters
topic Rheumatoid arthritis
Cytokines
Artificial intelligence
Anti-TNF response prediction
Interleukin 2
Interleukin 6
url http://www.sciencedirect.com/science/article/pii/S2405844023101332
work_keys_str_mv AT juanluisvaldiviesoshephard predictingantitnftreatmentresponseinrheumatoidarthritisanartificialintelligencedrivenmodelusingcytokineprofileandroutineclinicalpracticeparameters
AT enriquejosuealvarezrobles predictingantitnftreatmentresponseinrheumatoidarthritisanartificialintelligencedrivenmodelusingcytokineprofileandroutineclinicalpracticeparameters
AT carmencamarahijon predictingantitnftreatmentresponseinrheumatoidarthritisanartificialintelligencedrivenmodelusingcytokineprofileandroutineclinicalpracticeparameters
AT borjahernandezbreijo predictingantitnftreatmentresponseinrheumatoidarthritisanartificialintelligencedrivenmodelusingcytokineprofileandroutineclinicalpracticeparameters
AT martanovellanavarro predictingantitnftreatmentresponseinrheumatoidarthritisanartificialintelligencedrivenmodelusingcytokineprofileandroutineclinicalpracticeparameters
AT patriciabogasschay predictingantitnftreatmentresponseinrheumatoidarthritisanartificialintelligencedrivenmodelusingcytokineprofileandroutineclinicalpracticeparameters
AT ricardocuestadelacamara predictingantitnftreatmentresponseinrheumatoidarthritisanartificialintelligencedrivenmodelusingcytokineprofileandroutineclinicalpracticeparameters
AT alejandrobalsacriado predictingantitnftreatmentresponseinrheumatoidarthritisanartificialintelligencedrivenmodelusingcytokineprofileandroutineclinicalpracticeparameters
AT eduardolopezgranados predictingantitnftreatmentresponseinrheumatoidarthritisanartificialintelligencedrivenmodelusingcytokineprofileandroutineclinicalpracticeparameters
AT chamaidaplasenciarodriguez predictingantitnftreatmentresponseinrheumatoidarthritisanartificialintelligencedrivenmodelusingcytokineprofileandroutineclinicalpracticeparameters