Cytotoxicity of a Cell Culture Medium Treated with a High-Voltage Pulse Using Stainless Steel Electrodes and the Role of Iron Ions

High-voltage pulses applied to a cell suspension cause not only cell membrane permeabilization, but a variety of electrolysis reactions to also occur at the electrode–solution interfaces. Here, the cytotoxicity of a culture medium treated by a single electric pulse and the role of the iron ions in t...

Full description

Bibliographic Details
Main Authors: Gintautas Saulis, Raminta Rodaitė-Riševičienė, Rita Saulė
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Membranes
Subjects:
Online Access:https://www.mdpi.com/2077-0375/12/2/184
Description
Summary:High-voltage pulses applied to a cell suspension cause not only cell membrane permeabilization, but a variety of electrolysis reactions to also occur at the electrode–solution interfaces. Here, the cytotoxicity of a culture medium treated by a single electric pulse and the role of the iron ions in this cytotoxicity were studied in vitro. The experiments were carried out on mouse hepatoma MH-22A, rat glioma C6, and Chinese hamster ovary cells. The cell culture medium treated with a high-voltage pulse was highly cytotoxic. All cells died in the medium treated by a single electric pulse with a duration of 2 ms and an amplitude of just 0.2 kV/cm. The medium treated with a shorter pulse was less cytotoxic. The cell viability was inversely proportional to the amount of electric charge that flowed through the solution. The amount of iron ions released from the stainless steel anode (>0.5 mM) was enough to reduce cell viability. However, iron ions were not the sole reason of cell death. To kill all MH-22A and CHO cells, the concentration of Fe<sup>3+</sup> ions in a medium of more than 2 mM was required.
ISSN:2077-0375