Exploring high-performance viscosity index improver polymers via high-throughput molecular dynamics and explainable AI
Abstract Data-driven material innovation has the potential to revolutionize the traditional Edisonian process and significantly shorten development cycles. However, the scarcity of data in materials science and the poor interpretability of machine learning pose serious obstacles to the adoption of t...
المؤلفون الرئيسيون: | Rui Zhou, Luyao Bao, Weifeng Bu, Feng Zhou |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Nature Portfolio
2025-03-01
|
سلاسل: | npj Computational Materials |
الوصول للمادة أونلاين: | https://doi.org/10.1038/s41524-025-01539-z |
مواد مشابهة
-
Local Viscosity Control Printing for High-Throughput Additive Manufacturing of Polymers
حسب: Siegel, Joshua E, وآخرون
منشور في: (2017) -
Accelerated viscosity measurements of polymer solutions using high throughput experimentation and machine learning
حسب: Chua, Zhong Zhe
منشور في: (2021) -
High-throughput viscosity measurements for Newtonian fluids
حسب: Tan, Shu Zheng
منشور في: (2023) -
Study on Relations of High-Pressure Viscosity Properties and the Polymer Behavior of Various Viscosity Index Improver-Blended Oil (Part 2)
حسب: Hitoshi Hata, وآخرون
منشور في: (2021-03-01) -
Structural and viscosity studies of dendritic hyper branched polymer as viscosity index improvers
حسب: Reham I. El-shazly, وآخرون
منشور في: (2024-05-01)