Exploring high-performance viscosity index improver polymers via high-throughput molecular dynamics and explainable AI
Abstract Data-driven material innovation has the potential to revolutionize the traditional Edisonian process and significantly shorten development cycles. However, the scarcity of data in materials science and the poor interpretability of machine learning pose serious obstacles to the adoption of t...
Үндсэн зохиолчид: | Rui Zhou, Luyao Bao, Weifeng Bu, Feng Zhou |
---|---|
Формат: | Өгүүллэг |
Хэл сонгох: | English |
Хэвлэсэн: |
Nature Portfolio
2025-03-01
|
Цуврал: | npj Computational Materials |
Онлайн хандалт: | https://doi.org/10.1038/s41524-025-01539-z |
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Local Viscosity Control Printing for High-Throughput Additive Manufacturing of Polymers
-н: Siegel, Joshua E, зэрэг
Хэвлэсэн: (2017) -
Accelerated viscosity measurements of polymer solutions using high throughput experimentation and machine learning
-н: Chua, Zhong Zhe
Хэвлэсэн: (2021) -
High-throughput viscosity measurements for Newtonian fluids
-н: Tan, Shu Zheng
Хэвлэсэн: (2023) -
Study on Relations of High-Pressure Viscosity Properties and the Polymer Behavior of Various Viscosity Index Improver-Blended Oil (Part 2)
-н: Hitoshi Hata, зэрэг
Хэвлэсэн: (2021-03-01) -
Structural and viscosity studies of dendritic hyper branched polymer as viscosity index improvers
-н: Reham I. El-shazly, зэрэг
Хэвлэсэн: (2024-05-01)