Exploring high-performance viscosity index improver polymers via high-throughput molecular dynamics and explainable AI
Abstract Data-driven material innovation has the potential to revolutionize the traditional Edisonian process and significantly shorten development cycles. However, the scarcity of data in materials science and the poor interpretability of machine learning pose serious obstacles to the adoption of t...
Главные авторы: | Rui Zhou, Luyao Bao, Weifeng Bu, Feng Zhou |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
Nature Portfolio
2025-03-01
|
Серии: | npj Computational Materials |
Online-ссылка: | https://doi.org/10.1038/s41524-025-01539-z |
Схожие документы
-
Local Viscosity Control Printing for High-Throughput Additive Manufacturing of Polymers
по: Siegel, Joshua E, и др.
Опубликовано: (2017) -
Accelerated viscosity measurements of polymer solutions using high throughput experimentation and machine learning
по: Chua, Zhong Zhe
Опубликовано: (2021) -
High-throughput viscosity measurements for Newtonian fluids
по: Tan, Shu Zheng
Опубликовано: (2023) -
Study on Relations of High-Pressure Viscosity Properties and the Polymer Behavior of Various Viscosity Index Improver-Blended Oil (Part 2)
по: Hitoshi Hata, и др.
Опубликовано: (2021-03-01) -
Structural and viscosity studies of dendritic hyper branched polymer as viscosity index improvers
по: Reham I. El-shazly, и др.
Опубликовано: (2024-05-01)