Assembly and transport of nematic colloidal swarms above photo-patterned defects and surfaces

We investigate the dynamic assembly and swarm translocation of anisometric colloidal particles dispersed in a nematic liquid crystal and driven above a photosensitive surface. We use liquid crystal-enabled electrophoresis to propel these particles via an alternating electric field perpendicular to t...

Full description

Bibliographic Details
Main Authors: Arthur V Straube, Josep M Pagès, Antonio Ortiz-Ambriz, Pietro Tierno, Jordi Ignés-Mullol, Francesc Sagués
Format: Article
Language:English
Published: IOP Publishing 2018-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/aac3c6
Description
Summary:We investigate the dynamic assembly and swarm translocation of anisometric colloidal particles dispersed in a nematic liquid crystal and driven above a photosensitive surface. We use liquid crystal-enabled electrophoresis to propel these particles via an alternating electric field perpendicular to the sample cell. By manipulating the anchoring conditions on one surface of the experimental cell, we obtain a spatially extended spiral pattern of the liquid crystal orientation that induces the dynamic assembly of a rotating colloidal mill. This structure can be transported by translocating the topological defect above the photosensitive surface. We complement our findings with a theoretical model that captures the basic physics of the process, by formulating an analytic equation for the director field above the surface. Our reconfigurable nematic assemblies may be used as a test bed for complex swarming behaviour in biological and artificial microscale systems.
ISSN:1367-2630