Non-finitary Generalizations of Nil-triangular Subalgebras of Chevalley Algebras

Let $N\Phi(K)$ be a niltriangular subalgebra of Chevalley algebra over a field or ring $K$ associated with root system $\Phi$ of classical type. For type $A_{n-1}$ it is associated to algebra $NT(n,K)$ of (lower) nil-triangular $n \times n$- matrices over $K$. The algebra $R=NT(\Gamma,K)$ of all nil...

Full description

Bibliographic Details
Main Authors: J. V. Bekker, V. M. Levchuk, E. A. Sotnikova
Format: Article
Language:English
Published: Irkutsk State University 2019-09-01
Series:Известия Иркутского государственного университета: Серия "Математика"
Subjects:
Online Access:http://mathizv.isu.ru/en/article/file?id=1308
_version_ 1818145397748531200
author J. V. Bekker
V. M. Levchuk
E. A. Sotnikova
author_facet J. V. Bekker
V. M. Levchuk
E. A. Sotnikova
author_sort J. V. Bekker
collection DOAJ
description Let $N\Phi(K)$ be a niltriangular subalgebra of Chevalley algebra over a field or ring $K$ associated with root system $\Phi$ of classical type. For type $A_{n-1}$ it is associated to algebra $NT(n,K)$ of (lower) nil-triangular $n \times n$- matrices over $K$. The algebra $R=NT(\Gamma,K)$ of all nil-triangular $\Gamma$-matrices $\alpha =||a_{ij}||_{i,j\in \Gamma}$ over $K$ with indices from chain $\Gamma$ of natural numbers gives its non-finitary generalization. It is proved, (together with radicalness of ring $R$) that if $K$ is a ring without zero divizors, then ideals $T_{i,i-1}$ of all $\Gamma$-matrices with zeros above $i$-th row and in columns with numbers $\geq i$ exhausts all maximal commutative ideals of the ring $R$ and associated Lie rings $R^{(-)}$, and also maximal normal subgroups of adjoint group (it is isomorphic to the generalize unitriangular group $UT(\Gamma,K)$). As corollary we obtain that the automorphism groups $Aut\ R$ and $Aut\ R^{(-)}$ coincide. Partially automorphisms studied earlier, in particulary, for $Aut\ UT(\Gamma,K)$ when $K$ is a field. Well-known (1990) special matrix representation of Lie algebras $N\Phi(K)$ allows to construct non-finitary generalizations $NG(K)$ of type $G=B_\Gamma,C_\Gamma$ and $D_\Gamma$. Be research automorphisms by transfer to factors of Lie ring $NG(K)$ which is isomorphic to $NT(\Gamma,K)$. On the other hand, for any chain $\Gamma$ finitary nil-triangular $\Gamma$-matrices forms finitary Lie algebra $FNG(\Gamma,K)$ of type $G=A_{\Gamma}$ ( i.e., $FNG(\Gamma,K)$), $B_{\Gamma},C_{\Gamma }$ and $D_{\Gamma}$. Earlier automorphisms was studied (V. M. Levchuk and G. S. Sulejmanova, 1987 and 2009) for Lie ring $FNT(\Gamma,K)$ over ring $K$ without zero divizors and, also, for finitary generalizations of unipotent subgroups of Chevalley group of classical type over the field (including twisted types).
first_indexed 2024-12-11T12:02:49Z
format Article
id doaj.art-1f49a3e28e264483b732e7fdfc9047e5
institution Directory Open Access Journal
issn 1997-7670
2541-8785
language English
last_indexed 2024-12-11T12:02:49Z
publishDate 2019-09-01
publisher Irkutsk State University
record_format Article
series Известия Иркутского государственного университета: Серия "Математика"
spelling doaj.art-1f49a3e28e264483b732e7fdfc9047e52022-12-22T01:08:02ZengIrkutsk State UniversityИзвестия Иркутского государственного университета: Серия "Математика"1997-76702541-87852019-09-012913951https://doi.org/10.26516/1997-7670.2019.29.39Non-finitary Generalizations of Nil-triangular Subalgebras of Chevalley AlgebrasJ. V. BekkerV. M. LevchukE. A. SotnikovaLet $N\Phi(K)$ be a niltriangular subalgebra of Chevalley algebra over a field or ring $K$ associated with root system $\Phi$ of classical type. For type $A_{n-1}$ it is associated to algebra $NT(n,K)$ of (lower) nil-triangular $n \times n$- matrices over $K$. The algebra $R=NT(\Gamma,K)$ of all nil-triangular $\Gamma$-matrices $\alpha =||a_{ij}||_{i,j\in \Gamma}$ over $K$ with indices from chain $\Gamma$ of natural numbers gives its non-finitary generalization. It is proved, (together with radicalness of ring $R$) that if $K$ is a ring without zero divizors, then ideals $T_{i,i-1}$ of all $\Gamma$-matrices with zeros above $i$-th row and in columns with numbers $\geq i$ exhausts all maximal commutative ideals of the ring $R$ and associated Lie rings $R^{(-)}$, and also maximal normal subgroups of adjoint group (it is isomorphic to the generalize unitriangular group $UT(\Gamma,K)$). As corollary we obtain that the automorphism groups $Aut\ R$ and $Aut\ R^{(-)}$ coincide. Partially automorphisms studied earlier, in particulary, for $Aut\ UT(\Gamma,K)$ when $K$ is a field. Well-known (1990) special matrix representation of Lie algebras $N\Phi(K)$ allows to construct non-finitary generalizations $NG(K)$ of type $G=B_\Gamma,C_\Gamma$ and $D_\Gamma$. Be research automorphisms by transfer to factors of Lie ring $NG(K)$ which is isomorphic to $NT(\Gamma,K)$. On the other hand, for any chain $\Gamma$ finitary nil-triangular $\Gamma$-matrices forms finitary Lie algebra $FNG(\Gamma,K)$ of type $G=A_{\Gamma}$ ( i.e., $FNG(\Gamma,K)$), $B_{\Gamma},C_{\Gamma }$ and $D_{\Gamma}$. Earlier automorphisms was studied (V. M. Levchuk and G. S. Sulejmanova, 1987 and 2009) for Lie ring $FNT(\Gamma,K)$ over ring $K$ without zero divizors and, also, for finitary generalizations of unipotent subgroups of Chevalley group of classical type over the field (including twisted types).http://mathizv.isu.ru/en/article/file?id=1308Chevalley algebranil-triangular subalgebraunitriangular groupfinitary and nonfinitary generalizationsradical ring
spellingShingle J. V. Bekker
V. M. Levchuk
E. A. Sotnikova
Non-finitary Generalizations of Nil-triangular Subalgebras of Chevalley Algebras
Известия Иркутского государственного университета: Серия "Математика"
Chevalley algebra
nil-triangular subalgebra
unitriangular group
finitary and nonfinitary generalizations
radical ring
title Non-finitary Generalizations of Nil-triangular Subalgebras of Chevalley Algebras
title_full Non-finitary Generalizations of Nil-triangular Subalgebras of Chevalley Algebras
title_fullStr Non-finitary Generalizations of Nil-triangular Subalgebras of Chevalley Algebras
title_full_unstemmed Non-finitary Generalizations of Nil-triangular Subalgebras of Chevalley Algebras
title_short Non-finitary Generalizations of Nil-triangular Subalgebras of Chevalley Algebras
title_sort non finitary generalizations of nil triangular subalgebras of chevalley algebras
topic Chevalley algebra
nil-triangular subalgebra
unitriangular group
finitary and nonfinitary generalizations
radical ring
url http://mathizv.isu.ru/en/article/file?id=1308
work_keys_str_mv AT jvbekker nonfinitarygeneralizationsofniltriangularsubalgebrasofchevalleyalgebras
AT vmlevchuk nonfinitarygeneralizationsofniltriangularsubalgebrasofchevalleyalgebras
AT easotnikova nonfinitarygeneralizationsofniltriangularsubalgebrasofchevalleyalgebras