B-VGG16: Binary Quantized Convolutional Neuronal Network for image classification

In this work, a Binary Quantized Convolution neural network for image classification is trained and evaluated. Binarized neural networks reduce the amount of memory, and it is possible to implement them with less hardware than those that use real value variables (Floating Point 32 bits). This type o...

Full description

Bibliographic Details
Main Authors: Nicolás Urbano Pintos, Héctor Lacomi, Mario Lavorato
Format: Article
Language:English
Published: Universidad de Buenos Aires 2022-12-01
Series:Revista Elektrón
Subjects:
Online Access:http://elektron.fi.uba.ar/index.php/elektron/article/view/169
_version_ 1811198657632927744
author Nicolás Urbano Pintos
Héctor Lacomi
Mario Lavorato
author_facet Nicolás Urbano Pintos
Héctor Lacomi
Mario Lavorato
author_sort Nicolás Urbano Pintos
collection DOAJ
description In this work, a Binary Quantized Convolution neural network for image classification is trained and evaluated. Binarized neural networks reduce the amount of memory, and it is possible to implement them with less hardware than those that use real value variables (Floating Point 32 bits). This type of network can be implemented in embedded systems, such as FPGA. A quantization-aware training was performed, to compensate for the errors caused by the loss of precision of the parameters. The model obtained an evaluation accuracy of 88% with the CIFAR-10 evaluation set.
first_indexed 2024-04-12T01:33:44Z
format Article
id doaj.art-1f5a562ac2cc4bcc91b107b448790f4d
institution Directory Open Access Journal
issn 2525-0159
language English
last_indexed 2024-04-12T01:33:44Z
publishDate 2022-12-01
publisher Universidad de Buenos Aires
record_format Article
series Revista Elektrón
spelling doaj.art-1f5a562ac2cc4bcc91b107b448790f4d2022-12-22T03:53:22ZengUniversidad de Buenos AiresRevista Elektrón2525-01592022-12-016210711410.37537/rev.elektron.6.2.169.202299B-VGG16: Binary Quantized Convolutional Neuronal Network for image classificationNicolás Urbano Pintos0Héctor Lacomi1Mario Lavorato2Universidad Tecnológica Nacional - Facultad Regional Haedo CITEDEFGrupo ASE, UTN FRHGrupo TAMA, UTN FRHIn this work, a Binary Quantized Convolution neural network for image classification is trained and evaluated. Binarized neural networks reduce the amount of memory, and it is possible to implement them with less hardware than those that use real value variables (Floating Point 32 bits). This type of network can be implemented in embedded systems, such as FPGA. A quantization-aware training was performed, to compensate for the errors caused by the loss of precision of the parameters. The model obtained an evaluation accuracy of 88% with the CIFAR-10 evaluation set.http://elektron.fi.uba.ar/index.php/elektron/article/view/169redes neuronales de convoluciónclasificacióncuantización
spellingShingle Nicolás Urbano Pintos
Héctor Lacomi
Mario Lavorato
B-VGG16: Binary Quantized Convolutional Neuronal Network for image classification
Revista Elektrón
redes neuronales de convolución
clasificación
cuantización
title B-VGG16: Binary Quantized Convolutional Neuronal Network for image classification
title_full B-VGG16: Binary Quantized Convolutional Neuronal Network for image classification
title_fullStr B-VGG16: Binary Quantized Convolutional Neuronal Network for image classification
title_full_unstemmed B-VGG16: Binary Quantized Convolutional Neuronal Network for image classification
title_short B-VGG16: Binary Quantized Convolutional Neuronal Network for image classification
title_sort b vgg16 binary quantized convolutional neuronal network for image classification
topic redes neuronales de convolución
clasificación
cuantización
url http://elektron.fi.uba.ar/index.php/elektron/article/view/169
work_keys_str_mv AT nicolasurbanopintos bvgg16binaryquantizedconvolutionalneuronalnetworkforimageclassification
AT hectorlacomi bvgg16binaryquantizedconvolutionalneuronalnetworkforimageclassification
AT mariolavorato bvgg16binaryquantizedconvolutionalneuronalnetworkforimageclassification