CFD Modeling and Simulation of the Hydrodynamics Characteristics of Coarse Coal Particles in a 3D Liquid-Solid Fluidized Bed

In this study, a Eulerian-Eulerian liquid-solid two-phase flow model combined with kinetic theory of granular flow was established to study the hydrodynamic characteristics and fluidization behaviors of coarse coal particles in a 3D liquid-solid fluidized bed. First, grid independence analysis was c...

Full description

Bibliographic Details
Main Authors: Jian Peng, Wei Sun, Haisheng Han, Le Xie
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/11/6/569
Description
Summary:In this study, a Eulerian-Eulerian liquid-solid two-phase flow model combined with kinetic theory of granular flow was established to study the hydrodynamic characteristics and fluidization behaviors of coarse coal particles in a 3D liquid-solid fluidized bed. First, grid independence analysis was conducted to select the appropriate grid model parameters. Then, the developed computational fluid dynamics (CFD) model was validated by comparing the experimental data and simulation results in terms of the expansion degree of low-density fine particles and high-density coarse particles at different superficial liquid velocities. The simulation results agreed well with the experimental data, thus validating the proposed CFD mathematical model. The effects of particle size and particle density on the homogeneous or heterogeneous fluidization behaviors were investigated. The simulation results indicate that low-density fine particles are easily fluidized, exhibiting a certain range of homogeneous expansion behaviors. For the large and heavy particles, inhomogeneity may occur throughout the bed, including water voids and velocity fluctuations.
ISSN:2075-163X