Summary: | Chlorophyll-a concentration (Chla) is recognized as an essential climate variable and is one of the primary parameters of ocean-color satellite products. Ocean-color missions have accumulated continuous Chla data for over two decades since the launch of SeaWiFS (Sea-viewing Wide Field-of-view Sensor) in 1997. However, the on-orbit life of a single mission is about five to ten years. To build a dataset with a time span long enough to serve climate change related studies, it is necessary to merge the Chla data from multiple sensors. The European Space Agency has developed two sets of merged Chla products, namely GlobColour and OC-CCI (Ocean Colour Climate Change Initiative), which have been widely used. Nonetheless, issues remain in the long-term trend analysis of these two datasets because the inter-mission differences in Chla have not been completely corrected. To obtain more accurate Chla trends in the global and various oceans, we produced a new dataset by merging Chla records from the SeaWiFS, MODIS (Medium-spectral Resolution Imaging Spectrometer), MERIS (Moderate Resolution Imaging Spectroradiometer), VIIRS (Visible Infrared Imaging Radiometer Suite), and OLCI (Ocean and Land Colour Instrument) with inter-mission differences corrected in this work. The fitness of the dataset on long-term Chla trend study was validated by using in situ Chla and comparing the trend estimates to the multi-annual variability of different satellite Chla records. The results suggest that our dataset can be used for long-term series analysis and trend detection. We also provide the global trend map in Chla over 23 years (1998–2020) and present a significant positive global trend with 0.67% ± 0.37%/yr.
|