Simple extension of the plane-wave final state in photoemission: Bringing understanding to the photon-energy dependence of two-dimensional materials

Angle-resolved photoemission spectroscopy (ARPES) is a method that measures orbital and band structure contrast through the momentum distribution of photoelectrons. Its simplest interpretation is obtained in the plane-wave approximation, according to which photoelectrons propagate freely to the dete...

Full description

Bibliographic Details
Main Authors: Christian S. Kern, Anja Haags, Larissa Egger, Xiaosheng Yang, Hans Kirschner, Susanne Wolff, Thomas Seyller, Alexander Gottwald, Mathias Richter, Umberto De Giovannini, Angel Rubio, Michael G. Ramsey, François C. Bocquet, Serguei Soubatch, F. Stefan Tautz, Peter Puschnig, Simon Moser
Format: Article
Language:English
Published: American Physical Society 2023-08-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.5.033075
_version_ 1797210424384421888
author Christian S. Kern
Anja Haags
Larissa Egger
Xiaosheng Yang
Hans Kirschner
Susanne Wolff
Thomas Seyller
Alexander Gottwald
Mathias Richter
Umberto De Giovannini
Angel Rubio
Michael G. Ramsey
François C. Bocquet
Serguei Soubatch
F. Stefan Tautz
Peter Puschnig
Simon Moser
author_facet Christian S. Kern
Anja Haags
Larissa Egger
Xiaosheng Yang
Hans Kirschner
Susanne Wolff
Thomas Seyller
Alexander Gottwald
Mathias Richter
Umberto De Giovannini
Angel Rubio
Michael G. Ramsey
François C. Bocquet
Serguei Soubatch
F. Stefan Tautz
Peter Puschnig
Simon Moser
author_sort Christian S. Kern
collection DOAJ
description Angle-resolved photoemission spectroscopy (ARPES) is a method that measures orbital and band structure contrast through the momentum distribution of photoelectrons. Its simplest interpretation is obtained in the plane-wave approximation, according to which photoelectrons propagate freely to the detector. The photoelectron momentum distribution is then essentially given by the Fourier transform of the real-space orbital. While the plane-wave approximation is remarkably successful in describing the momentum distributions of aromatic compounds, it generally fails to capture kinetic-energy-dependent final-state interference and dichroism effects. Focusing our present study on quasi-freestanding monolayer graphene as the archetypical two-dimensional (2D) material, we observe an exemplary E_{kin}-dependent modulation of, and a redistribution of spectral weight within, its characteristic horseshoe signature around the K[over ¯] and K[over ¯]^{′} points: both effects indeed cannot be rationalized by the plane-wave final state. Our data are, however, in remarkable agreement with ab initio time-dependent density functional simulations of a freestanding graphene layer and can be explained by a simple extension of the plane-wave final state, permitting the two dipole-allowed partial waves emitted from the C 2p_{z} orbitals to scatter in the potential of their immediate surroundings. Exploiting the absolute photon flux calibration of the Metrology Light Source, this scattered-wave approximation allows us to extract E_{kin}-dependent amplitudes and phases of both partial waves directly from photoemission data. The scattered-wave approximation thus represents a powerful yet intuitive refinement of the plane-wave final state in photoemission of 2D materials and beyond.
first_indexed 2024-04-24T10:10:22Z
format Article
id doaj.art-1f96c5fc73904716893738cc3e7965bf
institution Directory Open Access Journal
issn 2643-1564
language English
last_indexed 2024-04-24T10:10:22Z
publishDate 2023-08-01
publisher American Physical Society
record_format Article
series Physical Review Research
spelling doaj.art-1f96c5fc73904716893738cc3e7965bf2024-04-12T17:32:57ZengAmerican Physical SocietyPhysical Review Research2643-15642023-08-015303307510.1103/PhysRevResearch.5.033075Simple extension of the plane-wave final state in photoemission: Bringing understanding to the photon-energy dependence of two-dimensional materialsChristian S. KernAnja HaagsLarissa EggerXiaosheng YangHans KirschnerSusanne WolffThomas SeyllerAlexander GottwaldMathias RichterUmberto De GiovanniniAngel RubioMichael G. RamseyFrançois C. BocquetSerguei SoubatchF. Stefan TautzPeter PuschnigSimon MoserAngle-resolved photoemission spectroscopy (ARPES) is a method that measures orbital and band structure contrast through the momentum distribution of photoelectrons. Its simplest interpretation is obtained in the plane-wave approximation, according to which photoelectrons propagate freely to the detector. The photoelectron momentum distribution is then essentially given by the Fourier transform of the real-space orbital. While the plane-wave approximation is remarkably successful in describing the momentum distributions of aromatic compounds, it generally fails to capture kinetic-energy-dependent final-state interference and dichroism effects. Focusing our present study on quasi-freestanding monolayer graphene as the archetypical two-dimensional (2D) material, we observe an exemplary E_{kin}-dependent modulation of, and a redistribution of spectral weight within, its characteristic horseshoe signature around the K[over ¯] and K[over ¯]^{′} points: both effects indeed cannot be rationalized by the plane-wave final state. Our data are, however, in remarkable agreement with ab initio time-dependent density functional simulations of a freestanding graphene layer and can be explained by a simple extension of the plane-wave final state, permitting the two dipole-allowed partial waves emitted from the C 2p_{z} orbitals to scatter in the potential of their immediate surroundings. Exploiting the absolute photon flux calibration of the Metrology Light Source, this scattered-wave approximation allows us to extract E_{kin}-dependent amplitudes and phases of both partial waves directly from photoemission data. The scattered-wave approximation thus represents a powerful yet intuitive refinement of the plane-wave final state in photoemission of 2D materials and beyond.http://doi.org/10.1103/PhysRevResearch.5.033075
spellingShingle Christian S. Kern
Anja Haags
Larissa Egger
Xiaosheng Yang
Hans Kirschner
Susanne Wolff
Thomas Seyller
Alexander Gottwald
Mathias Richter
Umberto De Giovannini
Angel Rubio
Michael G. Ramsey
François C. Bocquet
Serguei Soubatch
F. Stefan Tautz
Peter Puschnig
Simon Moser
Simple extension of the plane-wave final state in photoemission: Bringing understanding to the photon-energy dependence of two-dimensional materials
Physical Review Research
title Simple extension of the plane-wave final state in photoemission: Bringing understanding to the photon-energy dependence of two-dimensional materials
title_full Simple extension of the plane-wave final state in photoemission: Bringing understanding to the photon-energy dependence of two-dimensional materials
title_fullStr Simple extension of the plane-wave final state in photoemission: Bringing understanding to the photon-energy dependence of two-dimensional materials
title_full_unstemmed Simple extension of the plane-wave final state in photoemission: Bringing understanding to the photon-energy dependence of two-dimensional materials
title_short Simple extension of the plane-wave final state in photoemission: Bringing understanding to the photon-energy dependence of two-dimensional materials
title_sort simple extension of the plane wave final state in photoemission bringing understanding to the photon energy dependence of two dimensional materials
url http://doi.org/10.1103/PhysRevResearch.5.033075
work_keys_str_mv AT christianskern simpleextensionoftheplanewavefinalstateinphotoemissionbringingunderstandingtothephotonenergydependenceoftwodimensionalmaterials
AT anjahaags simpleextensionoftheplanewavefinalstateinphotoemissionbringingunderstandingtothephotonenergydependenceoftwodimensionalmaterials
AT larissaegger simpleextensionoftheplanewavefinalstateinphotoemissionbringingunderstandingtothephotonenergydependenceoftwodimensionalmaterials
AT xiaoshengyang simpleextensionoftheplanewavefinalstateinphotoemissionbringingunderstandingtothephotonenergydependenceoftwodimensionalmaterials
AT hanskirschner simpleextensionoftheplanewavefinalstateinphotoemissionbringingunderstandingtothephotonenergydependenceoftwodimensionalmaterials
AT susannewolff simpleextensionoftheplanewavefinalstateinphotoemissionbringingunderstandingtothephotonenergydependenceoftwodimensionalmaterials
AT thomasseyller simpleextensionoftheplanewavefinalstateinphotoemissionbringingunderstandingtothephotonenergydependenceoftwodimensionalmaterials
AT alexandergottwald simpleextensionoftheplanewavefinalstateinphotoemissionbringingunderstandingtothephotonenergydependenceoftwodimensionalmaterials
AT mathiasrichter simpleextensionoftheplanewavefinalstateinphotoemissionbringingunderstandingtothephotonenergydependenceoftwodimensionalmaterials
AT umbertodegiovannini simpleextensionoftheplanewavefinalstateinphotoemissionbringingunderstandingtothephotonenergydependenceoftwodimensionalmaterials
AT angelrubio simpleextensionoftheplanewavefinalstateinphotoemissionbringingunderstandingtothephotonenergydependenceoftwodimensionalmaterials
AT michaelgramsey simpleextensionoftheplanewavefinalstateinphotoemissionbringingunderstandingtothephotonenergydependenceoftwodimensionalmaterials
AT francoiscbocquet simpleextensionoftheplanewavefinalstateinphotoemissionbringingunderstandingtothephotonenergydependenceoftwodimensionalmaterials
AT sergueisoubatch simpleextensionoftheplanewavefinalstateinphotoemissionbringingunderstandingtothephotonenergydependenceoftwodimensionalmaterials
AT fstefantautz simpleextensionoftheplanewavefinalstateinphotoemissionbringingunderstandingtothephotonenergydependenceoftwodimensionalmaterials
AT peterpuschnig simpleextensionoftheplanewavefinalstateinphotoemissionbringingunderstandingtothephotonenergydependenceoftwodimensionalmaterials
AT simonmoser simpleextensionoftheplanewavefinalstateinphotoemissionbringingunderstandingtothephotonenergydependenceoftwodimensionalmaterials