Tomography of an optomechanical oscillator via parametrically amplified position measurement
We propose a protocol for quantum state tomography of nonclassical states in optomechanical systems. Using a parametric drive, the procedure overcomes the challenges of weak optomechanical coupling, poor detection efficiency, and thermal noise to enable high efficiency homodyne measurement. Our anal...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2019-01-01
|
Series: | New Journal of Physics |
Subjects: | |
Online Access: | https://doi.org/10.1088/1367-2630/ab044c |
Summary: | We propose a protocol for quantum state tomography of nonclassical states in optomechanical systems. Using a parametric drive, the procedure overcomes the challenges of weak optomechanical coupling, poor detection efficiency, and thermal noise to enable high efficiency homodyne measurement. Our analysis is based on the analytic description of the generalized measurement that is performed when optomechanical position measurement competes with thermal noise and a parametric drive. The proposed experimental procedure is numerically simulated in realistic parameter regimes, which allows us to show that tomographic reconstruction of otherwise unverifiable nonclassical states is made possible. |
---|---|
ISSN: | 1367-2630 |