A novel form of postcranial skeletal pneumaticity in a sauropod dinosaur: Implications for the paleobiology of Rebbachisauridae
In dinosaurs and other archosaurs, the presence of foramina connected with internal chambers in axial and appendicular bones is regarded as a robust indicator of postcranial skeletal pneumaticity (PSP). Here we analyze PSP and its paleobiological implications in rebbachisaurid diplodocoid sauropod d...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Institute of Paleobiology PAS
2017-06-01
|
Series: | Acta Palaeontologica Polonica |
Subjects: | |
Online Access: | http://www.app.pan.pl/archive/published/app62/app003162016.pdf |
_version_ | 1818229372879896576 |
---|---|
author | Lucio M. Ibiricu Matthew C. Lamanna Rubén D.F. Martínez Gabriel A. Casal Ignacio A. Cerda Gastón Martínez Leonardo Salgado |
author_facet | Lucio M. Ibiricu Matthew C. Lamanna Rubén D.F. Martínez Gabriel A. Casal Ignacio A. Cerda Gastón Martínez Leonardo Salgado |
author_sort | Lucio M. Ibiricu |
collection | DOAJ |
description | In dinosaurs and other archosaurs, the presence of foramina connected with internal chambers in axial and appendicular bones is regarded as a robust indicator of postcranial skeletal pneumaticity (PSP). Here we analyze PSP and its paleobiological implications in rebbachisaurid diplodocoid sauropod dinosaurs based primarily on the dorsal vertebrae of Katepensaurus goicoecheai, a rebbachisaurid from the Cenomanian–Turonian (Upper Cretaceous) Bajo Barreal Formation of Patagonia, Argentina. We document a complex of interconnected pneumatic foramina and internal chambers within the dorsal vertebral transverse processes of Katepensaurus. Collectively, these structures constitute a form of PSP that has not previously been observed in sauropods, though it is closely comparable to morphologies seen in selected birds and non-avian theropods. Parts of the skeletons of Katepensaurus and other rebbachisaurid taxa such as Amazonsaurus maranhensis and Tataouinea hannibalis exhibit an elevated degree of pneumaticity relative to the conditions in many other sauropods. We interpret this extensive PSP as an adaptation for lowering the density of the skeleton, and tentatively propose that this reduced skeletal density may also have decreased the muscle energy required to move the body and the heat generated in so doing. Given that several rebbachisaurids inhabited tropical to subtropical paleolatitudes during the extreme warmth of the mid-Cretaceous, increased PSP may have better enabled these sauropods to cope with extraordinarily high temperatures. Extensive skeletal pneumaticity may have been an important innovation in Rebbachisauridae, and perhaps also in saltasaurine titanosaurs, which evolved an even greater degree of PSP. This may in turn have contributed to the evolutionary success of rebbachisaurids, which were the only diplodocoids to survive into the Late Cretaceous. |
first_indexed | 2024-12-12T10:17:34Z |
format | Article |
id | doaj.art-1fafc7c4f50e4bb0a3f7796b05fce52b |
institution | Directory Open Access Journal |
issn | 0567-7920 1732-2421 |
language | English |
last_indexed | 2024-12-12T10:17:34Z |
publishDate | 2017-06-01 |
publisher | Institute of Paleobiology PAS |
record_format | Article |
series | Acta Palaeontologica Polonica |
spelling | doaj.art-1fafc7c4f50e4bb0a3f7796b05fce52b2022-12-22T00:27:37ZengInstitute of Paleobiology PASActa Palaeontologica Polonica0567-79201732-24212017-06-0162222123610.4202/app.00316.2016A novel form of postcranial skeletal pneumaticity in a sauropod dinosaur: Implications for the paleobiology of RebbachisauridaeLucio M. Ibiricu 0Matthew C. Lamanna1Rubén D.F. Martínez2Gabriel A. Casal3Ignacio A. Cerda4Gastón Martínez5 Leonardo Salgado6Instituto Patagónico de Geología y Paleontología (CCT CONICET-CENPAT), Boulevard Almirante Brown 2915, 9120 Puerto Madryn, Chubut, ArgentinaSection of Vertebrate Paleontology, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, Pennsylvania, 15213 USALaboratorio de Paleovertebrados, Universidad Nacional de la Patagonia San Juan Bosco, C.C. 360, 9000 Comodoro Rivadavia, Chubut, ArgentinaLaboratorio de Paleovertebrados, Universidad Nacional de la Patagonia San Juan Bosco, C.C. 360, 9000 Comodoro Rivadavia, Chubut, ArgentinaCONICET, Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro, Avenida General Roca 1242, 8332 General Roca, Río Negro, ArgentinaFacultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 299, 5000 Córdoba, ArgentinaCONICET, Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro, Avenida General Roca 1242, 8332 General Roca, Río Negro, ArgentinaIn dinosaurs and other archosaurs, the presence of foramina connected with internal chambers in axial and appendicular bones is regarded as a robust indicator of postcranial skeletal pneumaticity (PSP). Here we analyze PSP and its paleobiological implications in rebbachisaurid diplodocoid sauropod dinosaurs based primarily on the dorsal vertebrae of Katepensaurus goicoecheai, a rebbachisaurid from the Cenomanian–Turonian (Upper Cretaceous) Bajo Barreal Formation of Patagonia, Argentina. We document a complex of interconnected pneumatic foramina and internal chambers within the dorsal vertebral transverse processes of Katepensaurus. Collectively, these structures constitute a form of PSP that has not previously been observed in sauropods, though it is closely comparable to morphologies seen in selected birds and non-avian theropods. Parts of the skeletons of Katepensaurus and other rebbachisaurid taxa such as Amazonsaurus maranhensis and Tataouinea hannibalis exhibit an elevated degree of pneumaticity relative to the conditions in many other sauropods. We interpret this extensive PSP as an adaptation for lowering the density of the skeleton, and tentatively propose that this reduced skeletal density may also have decreased the muscle energy required to move the body and the heat generated in so doing. Given that several rebbachisaurids inhabited tropical to subtropical paleolatitudes during the extreme warmth of the mid-Cretaceous, increased PSP may have better enabled these sauropods to cope with extraordinarily high temperatures. Extensive skeletal pneumaticity may have been an important innovation in Rebbachisauridae, and perhaps also in saltasaurine titanosaurs, which evolved an even greater degree of PSP. This may in turn have contributed to the evolutionary success of rebbachisaurids, which were the only diplodocoids to survive into the Late Cretaceous.http://www.app.pan.pl/archive/published/app62/app003162016.pdfDinosauriaRebbachisauridaeKatepensaurusair sac systempostcranial skeletal pneumaticitypulmonary systemCretaceousBajo Barreal FormationArgentina |
spellingShingle | Lucio M. Ibiricu Matthew C. Lamanna Rubén D.F. Martínez Gabriel A. Casal Ignacio A. Cerda Gastón Martínez Leonardo Salgado A novel form of postcranial skeletal pneumaticity in a sauropod dinosaur: Implications for the paleobiology of Rebbachisauridae Acta Palaeontologica Polonica Dinosauria Rebbachisauridae Katepensaurus air sac system postcranial skeletal pneumaticity pulmonary system Cretaceous Bajo Barreal Formation Argentina |
title | A novel form of postcranial skeletal pneumaticity in a sauropod dinosaur: Implications for the paleobiology of Rebbachisauridae |
title_full | A novel form of postcranial skeletal pneumaticity in a sauropod dinosaur: Implications for the paleobiology of Rebbachisauridae |
title_fullStr | A novel form of postcranial skeletal pneumaticity in a sauropod dinosaur: Implications for the paleobiology of Rebbachisauridae |
title_full_unstemmed | A novel form of postcranial skeletal pneumaticity in a sauropod dinosaur: Implications for the paleobiology of Rebbachisauridae |
title_short | A novel form of postcranial skeletal pneumaticity in a sauropod dinosaur: Implications for the paleobiology of Rebbachisauridae |
title_sort | novel form of postcranial skeletal pneumaticity in a sauropod dinosaur implications for the paleobiology of rebbachisauridae |
topic | Dinosauria Rebbachisauridae Katepensaurus air sac system postcranial skeletal pneumaticity pulmonary system Cretaceous Bajo Barreal Formation Argentina |
url | http://www.app.pan.pl/archive/published/app62/app003162016.pdf |
work_keys_str_mv | AT luciomibiricu anovelformofpostcranialskeletalpneumaticityinasauropoddinosaurimplicationsforthepaleobiologyofrebbachisauridae AT matthewclamanna anovelformofpostcranialskeletalpneumaticityinasauropoddinosaurimplicationsforthepaleobiologyofrebbachisauridae AT rubendfmartinez anovelformofpostcranialskeletalpneumaticityinasauropoddinosaurimplicationsforthepaleobiologyofrebbachisauridae AT gabrielacasal anovelformofpostcranialskeletalpneumaticityinasauropoddinosaurimplicationsforthepaleobiologyofrebbachisauridae AT ignacioacerda anovelformofpostcranialskeletalpneumaticityinasauropoddinosaurimplicationsforthepaleobiologyofrebbachisauridae AT gastonmartinez anovelformofpostcranialskeletalpneumaticityinasauropoddinosaurimplicationsforthepaleobiologyofrebbachisauridae AT leonardosalgado anovelformofpostcranialskeletalpneumaticityinasauropoddinosaurimplicationsforthepaleobiologyofrebbachisauridae AT luciomibiricu novelformofpostcranialskeletalpneumaticityinasauropoddinosaurimplicationsforthepaleobiologyofrebbachisauridae AT matthewclamanna novelformofpostcranialskeletalpneumaticityinasauropoddinosaurimplicationsforthepaleobiologyofrebbachisauridae AT rubendfmartinez novelformofpostcranialskeletalpneumaticityinasauropoddinosaurimplicationsforthepaleobiologyofrebbachisauridae AT gabrielacasal novelformofpostcranialskeletalpneumaticityinasauropoddinosaurimplicationsforthepaleobiologyofrebbachisauridae AT ignacioacerda novelformofpostcranialskeletalpneumaticityinasauropoddinosaurimplicationsforthepaleobiologyofrebbachisauridae AT gastonmartinez novelformofpostcranialskeletalpneumaticityinasauropoddinosaurimplicationsforthepaleobiologyofrebbachisauridae AT leonardosalgado novelformofpostcranialskeletalpneumaticityinasauropoddinosaurimplicationsforthepaleobiologyofrebbachisauridae |