Summary: | The utilization of lithium slag (LS), a solid waste generated during the production of lithium carbonate, poses challenges due to its high sulfur content. This study presents a novel approach to enhancing the value of LS by employing alkali fusion and hydrothermal synthesis techniques to produce zeolite A at low temperatures. The synthesis of high-purity and crystalline lithium-slag-based zeolite A (LSZ) at 60 °C is reported for the first time in this research. The phase, morphology, particle size, and structure of LSZ were characterized by XRD, SEM, TEM, N<sub>2</sub> adsorption, and UV Raman spectroscopy, respectively. High-purity and crystalline zeolite A was successfully obtained under hydrothermal conditions of 60 °C, an NaOH concentration of 2.0 mol/L, and a hydrothermal time of 8 h. The samples synthesized at 60 °C exhibited better controllability and almost no byproduct of sodalite occurred compared to zeolite A synthesized at room temperature or conventional temperature (approximately 90 °C). Additionally, the growth mechanism of LSZ was elucidated, challenging the traditional understanding of utilization of lithium and enabling the synthesis of various zeolites at lower temperatures.
|