Note on an Iterative Functional Equation

We study the problem of solvability of the equation ϕ(x)=∫Ωg(w)ϕ(f(x,ω))P(dω)+F(x),\varphi \left( x \right) = \int_\Omega {g\left( w \right)} \varphi \left( {f\left( {x,\omega } \right)} \right)P\left( {d\omega } \right) + F\left( x \right), where P is a probability measure on a σ-algebra of subset...

Full description

Bibliographic Details
Main Authors: Baron Karol, Morawiec Janusz
Format: Article
Language:English
Published: Sciendo 2024-03-01
Series:Annales Mathematicae Silesianae
Subjects:
Online Access:https://doi.org/10.2478/amsil-2023-0031
_version_ 1827298422568255488
author Baron Karol
Morawiec Janusz
author_facet Baron Karol
Morawiec Janusz
author_sort Baron Karol
collection DOAJ
description We study the problem of solvability of the equation ϕ(x)=∫Ωg(w)ϕ(f(x,ω))P(dω)+F(x),\varphi \left( x \right) = \int_\Omega {g\left( w \right)} \varphi \left( {f\left( {x,\omega } \right)} \right)P\left( {d\omega } \right) + F\left( x \right), where P is a probability measure on a σ-algebra of subsets of Ω, assuming Hölder continuity of F on the range of f.
first_indexed 2024-04-24T15:14:36Z
format Article
id doaj.art-1fb5f51bf6d649c99a5e5649943b41dc
institution Directory Open Access Journal
issn 2391-4238
language English
last_indexed 2024-04-24T15:14:36Z
publishDate 2024-03-01
publisher Sciendo
record_format Article
series Annales Mathematicae Silesianae
spelling doaj.art-1fb5f51bf6d649c99a5e5649943b41dc2024-04-02T09:28:47ZengSciendoAnnales Mathematicae Silesianae2391-42382024-03-01381121710.2478/amsil-2023-0031Note on an Iterative Functional EquationBaron Karol0Morawiec Janusz11Institute of Mathematics, University of Silesia, Bankowa 14, PL-40-007Katowice, Poland1Institute of Mathematics, University of Silesia, Bankowa 14, PL-40-007Katowice, PolandWe study the problem of solvability of the equation ϕ(x)=∫Ωg(w)ϕ(f(x,ω))P(dω)+F(x),\varphi \left( x \right) = \int_\Omega {g\left( w \right)} \varphi \left( {f\left( {x,\omega } \right)} \right)P\left( {d\omega } \right) + F\left( x \right), where P is a probability measure on a σ-algebra of subsets of Ω, assuming Hölder continuity of F on the range of f.https://doi.org/10.2478/amsil-2023-0031iterative functional equationshölder continuous functions39b12
spellingShingle Baron Karol
Morawiec Janusz
Note on an Iterative Functional Equation
Annales Mathematicae Silesianae
iterative functional equations
hölder continuous functions
39b12
title Note on an Iterative Functional Equation
title_full Note on an Iterative Functional Equation
title_fullStr Note on an Iterative Functional Equation
title_full_unstemmed Note on an Iterative Functional Equation
title_short Note on an Iterative Functional Equation
title_sort note on an iterative functional equation
topic iterative functional equations
hölder continuous functions
39b12
url https://doi.org/10.2478/amsil-2023-0031
work_keys_str_mv AT baronkarol noteonaniterativefunctionalequation
AT morawiecjanusz noteonaniterativefunctionalequation