Note on an Iterative Functional Equation
We study the problem of solvability of the equation ϕ(x)=∫Ωg(w)ϕ(f(x,ω))P(dω)+F(x),\varphi \left( x \right) = \int_\Omega {g\left( w \right)} \varphi \left( {f\left( {x,\omega } \right)} \right)P\left( {d\omega } \right) + F\left( x \right), where P is a probability measure on a σ-algebra of subset...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sciendo
2024-03-01
|
Series: | Annales Mathematicae Silesianae |
Subjects: | |
Online Access: | https://doi.org/10.2478/amsil-2023-0031 |
_version_ | 1827298422568255488 |
---|---|
author | Baron Karol Morawiec Janusz |
author_facet | Baron Karol Morawiec Janusz |
author_sort | Baron Karol |
collection | DOAJ |
description | We study the problem of solvability of the equation
ϕ(x)=∫Ωg(w)ϕ(f(x,ω))P(dω)+F(x),\varphi \left( x \right) = \int_\Omega {g\left( w \right)} \varphi \left( {f\left( {x,\omega } \right)} \right)P\left( {d\omega } \right) + F\left( x \right),
where P is a probability measure on a σ-algebra of subsets of Ω, assuming Hölder continuity of F on the range of f. |
first_indexed | 2024-04-24T15:14:36Z |
format | Article |
id | doaj.art-1fb5f51bf6d649c99a5e5649943b41dc |
institution | Directory Open Access Journal |
issn | 2391-4238 |
language | English |
last_indexed | 2024-04-24T15:14:36Z |
publishDate | 2024-03-01 |
publisher | Sciendo |
record_format | Article |
series | Annales Mathematicae Silesianae |
spelling | doaj.art-1fb5f51bf6d649c99a5e5649943b41dc2024-04-02T09:28:47ZengSciendoAnnales Mathematicae Silesianae2391-42382024-03-01381121710.2478/amsil-2023-0031Note on an Iterative Functional EquationBaron Karol0Morawiec Janusz11Institute of Mathematics, University of Silesia, Bankowa 14, PL-40-007Katowice, Poland1Institute of Mathematics, University of Silesia, Bankowa 14, PL-40-007Katowice, PolandWe study the problem of solvability of the equation ϕ(x)=∫Ωg(w)ϕ(f(x,ω))P(dω)+F(x),\varphi \left( x \right) = \int_\Omega {g\left( w \right)} \varphi \left( {f\left( {x,\omega } \right)} \right)P\left( {d\omega } \right) + F\left( x \right), where P is a probability measure on a σ-algebra of subsets of Ω, assuming Hölder continuity of F on the range of f.https://doi.org/10.2478/amsil-2023-0031iterative functional equationshölder continuous functions39b12 |
spellingShingle | Baron Karol Morawiec Janusz Note on an Iterative Functional Equation Annales Mathematicae Silesianae iterative functional equations hölder continuous functions 39b12 |
title | Note on an Iterative Functional Equation |
title_full | Note on an Iterative Functional Equation |
title_fullStr | Note on an Iterative Functional Equation |
title_full_unstemmed | Note on an Iterative Functional Equation |
title_short | Note on an Iterative Functional Equation |
title_sort | note on an iterative functional equation |
topic | iterative functional equations hölder continuous functions 39b12 |
url | https://doi.org/10.2478/amsil-2023-0031 |
work_keys_str_mv | AT baronkarol noteonaniterativefunctionalequation AT morawiecjanusz noteonaniterativefunctionalequation |