Photo-induced processes of iron oxide nanoparticles to enhance laser therapy
Nanoparticles are used as drug carriers to increase the selectivity and effectiveness of therapy, as well as for combined therapy that utilizes different effects. Iron oxide nanoparticles are promising in this aspect. Due to magnetic properties, they can be used as a contrast agent for magnetic reso...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Non-profit partnership for development of domestic photodynamic therapy and photodiagnosis "Russian Photodynamic Association"
2022-02-01
|
Series: | Biomedical Photonics |
Subjects: | |
Online Access: | https://www.pdt-journal.com/jour/article/view/518 |
_version_ | 1797883619840098304 |
---|---|
author | D. V. Pominova I. D. Romanishkin E. A. Plotnikova N. B. Morozova V. B. Loschenov R. Wittig M. Linden R. W. Steiner A. V. Ryabova |
author_facet | D. V. Pominova I. D. Romanishkin E. A. Plotnikova N. B. Morozova V. B. Loschenov R. Wittig M. Linden R. W. Steiner A. V. Ryabova |
author_sort | D. V. Pominova |
collection | DOAJ |
description | Nanoparticles are used as drug carriers to increase the selectivity and effectiveness of therapy, as well as for combined therapy that utilizes different effects. Iron oxide nanoparticles are promising in this aspect. Due to magnetic properties, they can be used as a contrast agent for magnetic resonance imaging. Also, iron oxide nanoparticles could be coated with a photosensitizer for photodynamic therapy and their laser or magnetic heating can be used for phototherapy. Local enhancement of the electromagnetic field near iron oxide nanoparticles can increase the fluorescence intensity of photosensitizers and the efficiency of singlet oxygen generation. This paper presents the results of a study of iron oxide nanoparticles focused on the photophysical aspects of the formation of “hot spots” under laser irradiation. The photoinduced effects of iron oxide nanoparticles observed in in vitro experiments lead to the rupture of lysosomes. Theoretical modeling showed that the heating of iron oxide nanoparticles with a radius of 35 nm under the action of laser radiation is about 89°C and 19°C for wavelengths of 458 and 561 nm, respectively. Local field enhancement occurs in pairs of nanoparticles of various sizes and strongly depends on the distance between them. The maximum gain is achieved at small distances between nanoparticles. For a dimer of nanoparticles with radii of 10 and 35 nm at a distance of 1 nm, an enhancement factor of two orders of magnitude was obtained. The investigated phenomenon of «hot spots» is in demand for precision therapy, because the photo-induced processes occur at small distances between nanoparticles, in areas of their high accumulation. |
first_indexed | 2024-04-10T03:54:39Z |
format | Article |
id | doaj.art-1fc629bab7c74ebcb1b8e271ae0ec302 |
institution | Directory Open Access Journal |
issn | 2413-9432 |
language | Russian |
last_indexed | 2024-04-10T03:54:39Z |
publishDate | 2022-02-01 |
publisher | Non-profit partnership for development of domestic photodynamic therapy and photodiagnosis "Russian Photodynamic Association" |
record_format | Article |
series | Biomedical Photonics |
spelling | doaj.art-1fc629bab7c74ebcb1b8e271ae0ec3022023-03-13T07:12:31ZrusNon-profit partnership for development of domestic photodynamic therapy and photodiagnosis "Russian Photodynamic Association"Biomedical Photonics2413-94322022-02-01104445810.24931/2413-9432-2021-10-4-44-58243Photo-induced processes of iron oxide nanoparticles to enhance laser therapyD. V. Pominova0I. D. Romanishkin1E. A. Plotnikova2N. B. Morozova3V. B. Loschenov4R. Wittig5M. Linden6R. W. Steiner7A. V. Ryabova8Институт общей физики им. А.М. Прохорова Российской академии наук; Национальный исследовательский ядерный университет «МИФИ»Институт общей физики им. А.М. Прохорова Российской академии наукМосковский научно-исследовательский онкологический институт им. П.А. Герцена – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Министерства здравоохранения Российской ФедерацииМосковский научно-исследовательский онкологический институт им. П.А. Герцена – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Министерства здравоохранения Российской ФедерацииИнститут общей физики им. А.М. Прохорова Российской академии наук; Национальный исследовательский ядерный университет «МИФИ»Институт лазерных технологий в медицине и метрологииИнститут неорганической химии II Университета г. УльмНациональный исследовательский ядерный университет «МИФИ»Институт общей физики им. А.М. Прохорова Российской академии наук; Национальный исследовательский ядерный университет «МИФИ»Nanoparticles are used as drug carriers to increase the selectivity and effectiveness of therapy, as well as for combined therapy that utilizes different effects. Iron oxide nanoparticles are promising in this aspect. Due to magnetic properties, they can be used as a contrast agent for magnetic resonance imaging. Also, iron oxide nanoparticles could be coated with a photosensitizer for photodynamic therapy and their laser or magnetic heating can be used for phototherapy. Local enhancement of the electromagnetic field near iron oxide nanoparticles can increase the fluorescence intensity of photosensitizers and the efficiency of singlet oxygen generation. This paper presents the results of a study of iron oxide nanoparticles focused on the photophysical aspects of the formation of “hot spots” under laser irradiation. The photoinduced effects of iron oxide nanoparticles observed in in vitro experiments lead to the rupture of lysosomes. Theoretical modeling showed that the heating of iron oxide nanoparticles with a radius of 35 nm under the action of laser radiation is about 89°C and 19°C for wavelengths of 458 and 561 nm, respectively. Local field enhancement occurs in pairs of nanoparticles of various sizes and strongly depends on the distance between them. The maximum gain is achieved at small distances between nanoparticles. For a dimer of nanoparticles with radii of 10 and 35 nm at a distance of 1 nm, an enhancement factor of two orders of magnitude was obtained. The investigated phenomenon of «hot spots» is in demand for precision therapy, because the photo-induced processes occur at small distances between nanoparticles, in areas of their high accumulation.https://www.pdt-journal.com/jour/article/view/518наночастицы оксида железаплазмон-поляритоны«горячие точки»моделированиелазерная гипертермияусиление электромагнитного поля |
spellingShingle | D. V. Pominova I. D. Romanishkin E. A. Plotnikova N. B. Morozova V. B. Loschenov R. Wittig M. Linden R. W. Steiner A. V. Ryabova Photo-induced processes of iron oxide nanoparticles to enhance laser therapy Biomedical Photonics наночастицы оксида железа плазмон-поляритоны «горячие точки» моделирование лазерная гипертермия усиление электромагнитного поля |
title | Photo-induced processes of iron oxide nanoparticles to enhance laser therapy |
title_full | Photo-induced processes of iron oxide nanoparticles to enhance laser therapy |
title_fullStr | Photo-induced processes of iron oxide nanoparticles to enhance laser therapy |
title_full_unstemmed | Photo-induced processes of iron oxide nanoparticles to enhance laser therapy |
title_short | Photo-induced processes of iron oxide nanoparticles to enhance laser therapy |
title_sort | photo induced processes of iron oxide nanoparticles to enhance laser therapy |
topic | наночастицы оксида железа плазмон-поляритоны «горячие точки» моделирование лазерная гипертермия усиление электромагнитного поля |
url | https://www.pdt-journal.com/jour/article/view/518 |
work_keys_str_mv | AT dvpominova photoinducedprocessesofironoxidenanoparticlestoenhancelasertherapy AT idromanishkin photoinducedprocessesofironoxidenanoparticlestoenhancelasertherapy AT eaplotnikova photoinducedprocessesofironoxidenanoparticlestoenhancelasertherapy AT nbmorozova photoinducedprocessesofironoxidenanoparticlestoenhancelasertherapy AT vbloschenov photoinducedprocessesofironoxidenanoparticlestoenhancelasertherapy AT rwittig photoinducedprocessesofironoxidenanoparticlestoenhancelasertherapy AT mlinden photoinducedprocessesofironoxidenanoparticlestoenhancelasertherapy AT rwsteiner photoinducedprocessesofironoxidenanoparticlestoenhancelasertherapy AT avryabova photoinducedprocessesofironoxidenanoparticlestoenhancelasertherapy |