Photo-induced processes of iron oxide nanoparticles to enhance laser therapy

Nanoparticles are used as drug carriers to increase the selectivity and effectiveness of therapy, as well as for combined therapy that utilizes different effects. Iron oxide nanoparticles are promising in this aspect. Due to magnetic properties, they can be used as a contrast agent for magnetic reso...

Full description

Bibliographic Details
Main Authors: D. V. Pominova, I. D. Romanishkin, E. A. Plotnikova, N. B. Morozova, V. B. Loschenov, R. Wittig, M. Linden, R. W. Steiner, A. V. Ryabova
Format: Article
Language:Russian
Published: Non-profit partnership for development of domestic photodynamic therapy and photodiagnosis "Russian Photodynamic Association" 2022-02-01
Series:Biomedical Photonics
Subjects:
Online Access:https://www.pdt-journal.com/jour/article/view/518
_version_ 1797883619840098304
author D. V. Pominova
I. D. Romanishkin
E. A. Plotnikova
N. B. Morozova
V. B. Loschenov
R. Wittig
M. Linden
R. W. Steiner
A. V. Ryabova
author_facet D. V. Pominova
I. D. Romanishkin
E. A. Plotnikova
N. B. Morozova
V. B. Loschenov
R. Wittig
M. Linden
R. W. Steiner
A. V. Ryabova
author_sort D. V. Pominova
collection DOAJ
description Nanoparticles are used as drug carriers to increase the selectivity and effectiveness of therapy, as well as for combined therapy that utilizes different effects. Iron oxide nanoparticles are promising in this aspect. Due to magnetic properties, they can be used as a contrast agent for magnetic resonance imaging. Also, iron oxide nanoparticles could be coated with a photosensitizer for photodynamic therapy and their laser or magnetic heating can be used for phototherapy. Local enhancement of the electromagnetic field near iron oxide nanoparticles can increase the fluorescence intensity of photosensitizers and the efficiency of singlet oxygen generation. This paper presents the results of a study of iron oxide nanoparticles focused on the photophysical aspects of the formation of “hot spots” under laser irradiation. The photoinduced effects of iron oxide nanoparticles observed in in vitro experiments lead to the rupture of lysosomes. Theoretical modeling showed that the heating of iron oxide nanoparticles with a radius of 35 nm under the action of laser radiation is about 89°C and 19°C for wavelengths of 458 and 561 nm, respectively. Local field enhancement occurs in pairs of nanoparticles of various sizes and strongly depends on the distance between them. The maximum gain is achieved at small distances between nanoparticles. For a dimer of nanoparticles with radii of 10 and 35 nm at a distance of 1 nm, an enhancement factor of two orders of magnitude was obtained. The investigated phenomenon of «hot spots» is in demand for precision therapy, because the photo-induced processes occur at small distances between nanoparticles, in areas of their high accumulation.
first_indexed 2024-04-10T03:54:39Z
format Article
id doaj.art-1fc629bab7c74ebcb1b8e271ae0ec302
institution Directory Open Access Journal
issn 2413-9432
language Russian
last_indexed 2024-04-10T03:54:39Z
publishDate 2022-02-01
publisher Non-profit partnership for development of domestic photodynamic therapy and photodiagnosis "Russian Photodynamic Association"
record_format Article
series Biomedical Photonics
spelling doaj.art-1fc629bab7c74ebcb1b8e271ae0ec3022023-03-13T07:12:31ZrusNon-profit partnership for development of domestic photodynamic therapy and photodiagnosis "Russian Photodynamic Association"Biomedical Photonics2413-94322022-02-01104445810.24931/2413-9432-2021-10-4-44-58243Photo-induced processes of iron oxide nanoparticles to enhance laser therapyD. V. Pominova0I. D. Romanishkin1E. A. Plotnikova2N. B. Morozova3V. B. Loschenov4R. Wittig5M. Linden6R. W. Steiner7A. V. Ryabova8Институт общей физики им. А.М. Прохорова Российской академии наук; Национальный исследовательский ядерный университет «МИФИ»Институт общей физики им. А.М. Прохорова Российской академии наукМосковский научно-исследовательский онкологический институт им. П.А. Герцена – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Министерства здравоохранения Российской ФедерацииМосковский научно-исследовательский онкологический институт им. П.А. Герцена – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Министерства здравоохранения Российской ФедерацииИнститут общей физики им. А.М. Прохорова Российской академии наук; Национальный исследовательский ядерный университет «МИФИ»Институт лазерных технологий в медицине и метрологииИнститут неорганической химии II Университета г. УльмНациональный исследовательский ядерный университет «МИФИ»Институт общей физики им. А.М. Прохорова Российской академии наук; Национальный исследовательский ядерный университет «МИФИ»Nanoparticles are used as drug carriers to increase the selectivity and effectiveness of therapy, as well as for combined therapy that utilizes different effects. Iron oxide nanoparticles are promising in this aspect. Due to magnetic properties, they can be used as a contrast agent for magnetic resonance imaging. Also, iron oxide nanoparticles could be coated with a photosensitizer for photodynamic therapy and their laser or magnetic heating can be used for phototherapy. Local enhancement of the electromagnetic field near iron oxide nanoparticles can increase the fluorescence intensity of photosensitizers and the efficiency of singlet oxygen generation. This paper presents the results of a study of iron oxide nanoparticles focused on the photophysical aspects of the formation of “hot spots” under laser irradiation. The photoinduced effects of iron oxide nanoparticles observed in in vitro experiments lead to the rupture of lysosomes. Theoretical modeling showed that the heating of iron oxide nanoparticles with a radius of 35 nm under the action of laser radiation is about 89°C and 19°C for wavelengths of 458 and 561 nm, respectively. Local field enhancement occurs in pairs of nanoparticles of various sizes and strongly depends on the distance between them. The maximum gain is achieved at small distances between nanoparticles. For a dimer of nanoparticles with radii of 10 and 35 nm at a distance of 1 nm, an enhancement factor of two orders of magnitude was obtained. The investigated phenomenon of «hot spots» is in demand for precision therapy, because the photo-induced processes occur at small distances between nanoparticles, in areas of their high accumulation.https://www.pdt-journal.com/jour/article/view/518наночастицы оксида железаплазмон-поляритоны«горячие точки»моделированиелазерная гипертермияусиление электромагнитного поля
spellingShingle D. V. Pominova
I. D. Romanishkin
E. A. Plotnikova
N. B. Morozova
V. B. Loschenov
R. Wittig
M. Linden
R. W. Steiner
A. V. Ryabova
Photo-induced processes of iron oxide nanoparticles to enhance laser therapy
Biomedical Photonics
наночастицы оксида железа
плазмон-поляритоны
«горячие точки»
моделирование
лазерная гипертермия
усиление электромагнитного поля
title Photo-induced processes of iron oxide nanoparticles to enhance laser therapy
title_full Photo-induced processes of iron oxide nanoparticles to enhance laser therapy
title_fullStr Photo-induced processes of iron oxide nanoparticles to enhance laser therapy
title_full_unstemmed Photo-induced processes of iron oxide nanoparticles to enhance laser therapy
title_short Photo-induced processes of iron oxide nanoparticles to enhance laser therapy
title_sort photo induced processes of iron oxide nanoparticles to enhance laser therapy
topic наночастицы оксида железа
плазмон-поляритоны
«горячие точки»
моделирование
лазерная гипертермия
усиление электромагнитного поля
url https://www.pdt-journal.com/jour/article/view/518
work_keys_str_mv AT dvpominova photoinducedprocessesofironoxidenanoparticlestoenhancelasertherapy
AT idromanishkin photoinducedprocessesofironoxidenanoparticlestoenhancelasertherapy
AT eaplotnikova photoinducedprocessesofironoxidenanoparticlestoenhancelasertherapy
AT nbmorozova photoinducedprocessesofironoxidenanoparticlestoenhancelasertherapy
AT vbloschenov photoinducedprocessesofironoxidenanoparticlestoenhancelasertherapy
AT rwittig photoinducedprocessesofironoxidenanoparticlestoenhancelasertherapy
AT mlinden photoinducedprocessesofironoxidenanoparticlestoenhancelasertherapy
AT rwsteiner photoinducedprocessesofironoxidenanoparticlestoenhancelasertherapy
AT avryabova photoinducedprocessesofironoxidenanoparticlestoenhancelasertherapy