On stability of non-inflectional elastica

This study considers the stability of a non-inflectional elastica under a conservative end force subject to the Dirichlet, mixed, and Neumann boundary conditions. It is demonstrated that the non-inflectional elastica subject to the Dirichlet boundary conditions is unconditionally stable, while for t...

Full description

Bibliographic Details
Main Author: Batista, Milan
Format: Article
Language:English
Published: Académie des sciences 2020-06-01
Series:Comptes Rendus. Mécanique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.2/
_version_ 1797651447064559616
author Batista, Milan
author_facet Batista, Milan
author_sort Batista, Milan
collection DOAJ
description This study considers the stability of a non-inflectional elastica under a conservative end force subject to the Dirichlet, mixed, and Neumann boundary conditions. It is demonstrated that the non-inflectional elastica subject to the Dirichlet boundary conditions is unconditionally stable, while for the other two boundary conditions, sufficient criteria for stability depend on the signs of the second derivatives of the tangent angle at the endpoints.
first_indexed 2024-03-11T16:15:56Z
format Article
id doaj.art-1fc7206629c84f889ec4c311707b1cf1
institution Directory Open Access Journal
issn 1873-7234
language English
last_indexed 2024-03-11T16:15:56Z
publishDate 2020-06-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mécanique
spelling doaj.art-1fc7206629c84f889ec4c311707b1cf12023-10-24T14:20:43ZengAcadémie des sciencesComptes Rendus. Mécanique1873-72342020-06-01348213714810.5802/crmeca.210.5802/crmeca.2On stability of non-inflectional elasticaBatista, Milanhttps://orcid.org/0000-0002-4004-8098This study considers the stability of a non-inflectional elastica under a conservative end force subject to the Dirichlet, mixed, and Neumann boundary conditions. It is demonstrated that the non-inflectional elastica subject to the Dirichlet boundary conditions is unconditionally stable, while for the other two boundary conditions, sufficient criteria for stability depend on the signs of the second derivatives of the tangent angle at the endpoints.https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.2/ElasticityNon-inflectional elasticaStability
spellingShingle Batista, Milan
On stability of non-inflectional elastica
Comptes Rendus. Mécanique
Elasticity
Non-inflectional elastica
Stability
title On stability of non-inflectional elastica
title_full On stability of non-inflectional elastica
title_fullStr On stability of non-inflectional elastica
title_full_unstemmed On stability of non-inflectional elastica
title_short On stability of non-inflectional elastica
title_sort on stability of non inflectional elastica
topic Elasticity
Non-inflectional elastica
Stability
url https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.2/
work_keys_str_mv AT batistamilan onstabilityofnoninflectionalelastica