New results on the existence of ground state solutions for generalized quasilinear Schrödinger equations coupled with the Chern–Simons gauge theory

In this paper, we study the following quasilinear Schrödinger equation \begin{equation*} \begin{split} -\Delta u&+V(x)u-\kappa u\Delta(u^2)+\mu\frac{h^2(|x|)}{|x|^2}(1+\kappa u^2)u\\ &+\mu\left(\int_{|x|}^{+\infty}\frac{h(s)}{s}(2+\kappa u^2(s))u^2(s)\text{d}s\right)u=f(u)\quad\text{in}~\mat...

Full description

Bibliographic Details
Main Authors: Yingying Xiao, Chuanxi Zhu
Format: Article
Language:English
Published: University of Szeged 2021-09-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=9074
_version_ 1827951129958285312
author Yingying Xiao
Chuanxi Zhu
author_facet Yingying Xiao
Chuanxi Zhu
author_sort Yingying Xiao
collection DOAJ
description In this paper, we study the following quasilinear Schrödinger equation \begin{equation*} \begin{split} -\Delta u&+V(x)u-\kappa u\Delta(u^2)+\mu\frac{h^2(|x|)}{|x|^2}(1+\kappa u^2)u\\ &+\mu\left(\int_{|x|}^{+\infty}\frac{h(s)}{s}(2+\kappa u^2(s))u^2(s)\text{d}s\right)u=f(u)\quad\text{in}~\mathbb{R}^2, \end{split} \end{equation*} where $\kappa>0$, $\mu>0$, $V \in \mathcal{C}^1(\mathbb{R}^2,\mathbb{R})$ and $f \in \mathcal{C}(\mathbb{R},\mathbb{R})$. By using a constraint minimization of Pohožaev–Nehari type and analytic techniques, we obtain the existence of ground state solutions.
first_indexed 2024-04-09T13:36:58Z
format Article
id doaj.art-1fc7d6d52880477086ee73175a147646
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:36:58Z
publishDate 2021-09-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-1fc7d6d52880477086ee73175a1476462023-05-09T07:53:11ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752021-09-0120217311710.14232/ejqtde.2021.1.739074New results on the existence of ground state solutions for generalized quasilinear Schrödinger equations coupled with the Chern–Simons gauge theoryYingying Xiao0Chuanxi Zhu1Nanchang University, Nanchang, Jiangxi, P. R. ChinaNanchang University, Nanchang, Jiangxi, P. R. ChinaIn this paper, we study the following quasilinear Schrödinger equation \begin{equation*} \begin{split} -\Delta u&+V(x)u-\kappa u\Delta(u^2)+\mu\frac{h^2(|x|)}{|x|^2}(1+\kappa u^2)u\\ &+\mu\left(\int_{|x|}^{+\infty}\frac{h(s)}{s}(2+\kappa u^2(s))u^2(s)\text{d}s\right)u=f(u)\quad\text{in}~\mathbb{R}^2, \end{split} \end{equation*} where $\kappa>0$, $\mu>0$, $V \in \mathcal{C}^1(\mathbb{R}^2,\mathbb{R})$ and $f \in \mathcal{C}(\mathbb{R},\mathbb{R})$. By using a constraint minimization of Pohožaev–Nehari type and analytic techniques, we obtain the existence of ground state solutions.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=9074gauged schrödinger equationpohožaev identityground state solutions
spellingShingle Yingying Xiao
Chuanxi Zhu
New results on the existence of ground state solutions for generalized quasilinear Schrödinger equations coupled with the Chern–Simons gauge theory
Electronic Journal of Qualitative Theory of Differential Equations
gauged schrödinger equation
pohožaev identity
ground state solutions
title New results on the existence of ground state solutions for generalized quasilinear Schrödinger equations coupled with the Chern–Simons gauge theory
title_full New results on the existence of ground state solutions for generalized quasilinear Schrödinger equations coupled with the Chern–Simons gauge theory
title_fullStr New results on the existence of ground state solutions for generalized quasilinear Schrödinger equations coupled with the Chern–Simons gauge theory
title_full_unstemmed New results on the existence of ground state solutions for generalized quasilinear Schrödinger equations coupled with the Chern–Simons gauge theory
title_short New results on the existence of ground state solutions for generalized quasilinear Schrödinger equations coupled with the Chern–Simons gauge theory
title_sort new results on the existence of ground state solutions for generalized quasilinear schrodinger equations coupled with the chern simons gauge theory
topic gauged schrödinger equation
pohožaev identity
ground state solutions
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=9074
work_keys_str_mv AT yingyingxiao newresultsontheexistenceofgroundstatesolutionsforgeneralizedquasilinearschrodingerequationscoupledwiththechernsimonsgaugetheory
AT chuanxizhu newresultsontheexistenceofgroundstatesolutionsforgeneralizedquasilinearschrodingerequationscoupledwiththechernsimonsgaugetheory