Channel Equalization for Single Carrier MIMO Underwater Acoustic Communications

<p/> <p>Multiple-input multiple-output (MIMO) underwater acoustic (UWA) channels introduce both space-time interference (STI) and time-varying phase distortion for transmitted signals. In such cases, the equalized symbols produced by conventional equalizer aiming for STI cancelation suff...

Full description

Bibliographic Details
Main Authors: Zheng YahongRosa, Xiao Chengshan, Yang Wen-Bin, Yang TC, Tao Jun
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:EURASIP Journal on Advances in Signal Processing
Online Access:http://asp.eurasipjournals.com/content/2010/281769
Description
Summary:<p/> <p>Multiple-input multiple-output (MIMO) underwater acoustic (UWA) channels introduce both space-time interference (STI) and time-varying phase distortion for transmitted signals. In such cases, the equalized symbols produced by conventional equalizer aiming for STI cancelation suffer phase rotation and thus cannot be reliably detected. In this paper, we propose a new equalization scheme for high data rate single carrier MIMO UWA channels. Different from existing methods employing joint equalization and symbolwise phase tracking technology, the proposed scheme decouples the interference cancelation (IC) operation and the phase compensation operation, leading to a generalized equalizer structure combining an IC equalizer with a phase compensator. The decoupling of the two functionalities leads to robust signal detection, which is most desirable in practical UWA applications. MIMO linear equalizer (LE) is adopted to remove space-time interference, and a groupwise phase estimation and correction method is used to compensate the phase rotation. In addition, the layered space-time processing technology is adopted to enhance the equalization performance. The proposed equalization scheme is tested to be very robust with extensive experimental data collected at Kauai, Hawaii, in September 2005, and Saint Margaret's Bay, Nova Scotia, Canada, in May 2006.</p>
ISSN:1687-6172
1687-6180