Effect of Heat-Input on Microstructure and Toughness of CGHAZ in a High-Nb-Content Microalloyed HSLA Steel

The effect of various heat inputs on the microstructure and impact toughness of the simulated coarse-grained heat-affected zone (CGHAS) of a niobium microalloyed (0.14 wt.%) low-carbon steel was studied. The results showed that higher impact toughness was achieved at a low heat input of 20 kJ/cm, wh...

Full description

Bibliographic Details
Main Authors: Hongwei Yu, Kaiming Wu, Baoqi Dong, Jingxi Liu, Zicheng Liu, Daheng Xiao, Xing Jin, Hankun Liu, Minmin Tai
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/10/3588
Description
Summary:The effect of various heat inputs on the microstructure and impact toughness of the simulated coarse-grained heat-affected zone (CGHAS) of a niobium microalloyed (0.14 wt.%) low-carbon steel was studied. The results showed that higher impact toughness was achieved at a low heat input of 20 kJ/cm, which resulted from the formation of acicular ferrite laths/plates. They sectioned large prior austenite grains into many smaller regions, resulting in smaller crystallographic grains and high-angle grain boundaries. Conversely, when specimens were simulated with larger heat-inputs (100, 200 kJ/cm), the microstructure of the CGHAZ was predominantly composed of granular bainite plus massive MA constituents, thus impairing the impact toughness.
ISSN:1996-1944